Lithium Brine Projects: there is a resource, but is there a reserve?

Pablo Cortegoso - SRK Consulting US
BS Civil Eng., M.Eng. - pcortegoso@srk.com

Jujuy, Argentina - April 7, 2016
Lithium Brine Projects - Stages

- **Resource**
 - Geologic Model
 - Recoverable volume
 - In-situ grade
 - Classification

- **PEA/Scoping**
 - Preliminary Dynamic model
 - Produced brine composition
 - Economics

- **PFS/DFS**
 - Pilot test for brine extraction
 - Detailed Dynamic Model
 - Conversion of resource to reserve
Brine Resource Estimation

What is the challenge?

- **Dynamic** Resource - Brine moves...
- **Resource Volume** - Aquifer volume and specific yield
- Permeability governs rate of extraction
- Once the pump is on; the system is ON!
- Weather plays major role
- Sampling storage
- Spent brine disposal
A Mineral Reserve is the economically mineable part of a Measured and/or Indicated Mineral Resource. It includes diluting materials and allowances for losses, which may occur when the material is mined or extracted and is defined by studies at Pre-Feasibility or Feasibility level as appropriate that include application of Modifying Factors. Such studies demonstrate that, at the time of reporting, extraction could reasonably be justified.
Resources and Reserves

Mineral Resources

- **Inferred**
 - Secondary permeability, low confidence in hydraulic connectivity and/or grade

- **Indicated**
 - Physical evidence of sufficient hydraulic conductivity and transmissivity, statistical confidence in grade

- **Measured**
 - Technical and consistent support resulting in 3D model of hydro-lithology and grade

Mineral Reserves

- **Probable**
 - Long term model predictions (e.g., after 5 years), lower confidence in-situ recovery

- **Proven**
 - Short term model predictions (e.g., less than 5 years), higher confidence in-situ recovery

Modifying Factors: consideration of mining, processing, economics, marketing, legal, environmental, social and governmental factors

Increasing level of geological knowledge and confidence
Extractability

- Brine aquifer characteristics
 - Characteristic porosity
 - Specific yield
 - Transmissivity
 - Heterogeneity of stratigraphy
 - Grade distribution
Extractable reserve

Production well

Initial brine elevation

Specific retention loss, S_r

Loss due to minimum well drawdown

Brine elevation during exploitation

Reserve base subject to an in-situ recovery factor
Extractable Reserve

- In-situ recover factor derived from QP judgement and calibrated dynamic model
- Immature vs. mature salars
- High P_t and low S_y hydrostratigraphic layer(s) may not be appropriate to include as potentially extractable resource
Numerical model is used for brine projects as “dynamic” resource model to support mineral reserve estimates.

Model predicts:
- Extracted brine volume over time
- Brine chemistry in time
Numerical GW Model Applications

a) Predicted Total Pumping Rate and Average Drawdown in Brine Extraction Wells

- **Graph:**
 - X-axis: Years of Brine Extraction
 - Y-axis:
 - Total Pumping Rate (m/d)
 - Drawdown (m)

Legend:
- Blue line: Total Pumping Rate to Achieve Target Production
- Red line: Simulated Average Drawdown in Brine Extraction Wells

b) Predicted Average Concentration of Li, K, and B

- **Graph:**
 - X-axis: Years of Brine Extraction
 - Y-axis:
 - Li & B Concentration (mg/L)
 - K Concentration (mg/L)

Legend:
- Blue line: Li
- Red line: B
- Green line: K
Production schedule definition

- Defines extracted brine volume and grade to meet production expectations
- Defines number of production wells, individual pumping rates, and well locations during exploitation
- Defines CapEx and OpEx during life of mine
Production schedule should

• Account for process losses associated with LCE and/or KCl production
• Incorporate concurrent fresh water extraction from the salar
• Include process residuals (e.g., spent brine) that remain or are re-introduced to the salar
Cut-Off Grade

The lowest grade of mineralized material considered economic; used in the calculation of the ore reserves in a given deposit.

- Variables:
 - In-Situ Losses
 - Ex-Situ Losses
 - Product Pricing
 - OPEX
Cut-Off Grade - Example

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Sales Price</td>
<td>$8,000 $/t LCE</td>
</tr>
<tr>
<td>Process Cost</td>
<td>$2,200 $/t LCE</td>
</tr>
<tr>
<td>Fixed tail</td>
<td>100 mg/L</td>
</tr>
<tr>
<td>Prod Volume</td>
<td>40,000 t LCE / yr</td>
</tr>
<tr>
<td>LCE - Li conv</td>
<td>5.28</td>
</tr>
<tr>
<td>Prod Volume</td>
<td>7,575,758 kg Li/yr</td>
</tr>
<tr>
<td>Average Li Conc</td>
<td>500 mg Li/L Brine</td>
</tr>
<tr>
<td>Average Li Conc</td>
<td>0.0005 kg Li /L Brine</td>
</tr>
<tr>
<td>Brine to achieve target</td>
<td>15,151,515,152 L brine per year</td>
</tr>
<tr>
<td></td>
<td>43,290,043 L brine per day (350 day)</td>
</tr>
<tr>
<td>Max Plant Throughput</td>
<td>43,290 cubic meters raw brine per day</td>
</tr>
<tr>
<td>Annual Prod Cost</td>
<td>$88,000,000</td>
</tr>
<tr>
<td>Prod cost/L brine</td>
<td>0.005808</td>
</tr>
<tr>
<td>Breakeven Grade Li</td>
<td>238 mg/L</td>
</tr>
<tr>
<td>Recovery</td>
<td>58%</td>
</tr>
<tr>
<td>Produced LCE</td>
<td>11,000 t/yr</td>
</tr>
<tr>
<td>Opex</td>
<td>$8,000 $/t LCE</td>
</tr>
</tbody>
</table>
Conclusions

Your mineral reserve estimate should...

• Account for in-situ recovery factors for raw brine extraction from the Salar

• Be limited to measured and indicated mineral resource classifications

• Include ex-situ recovery factors which must be offset by additional raw brine extraction

• Address spent brine handling and/or process water supply which may impact predicted mine life

• Remain economic