Interpretation and Application of Hydrogeological Concepts to Commercial-scale Brine Extraction Projects

Cristian Pereira – Senior Hydrogeologist
Pablo Cortegoso – Civil Engineer

www.gecamin.com/waterinmining
Why brines?

Why not???

No miners
No mining engineers
Low environmental impact
Byproduct potential
Low surface impact
Low OPEX
Schematic Brine Deposit

Source: A Preliminary Deposit Model for Lithium Brines. Bradley, D et al. USGS 2013
Intro to Brine Extraction Process

- Brine extraction from wellfield
- Pre-concentration Ponds
- Process Plant
- Reagents
 - Power
 - Water

Final Product
- Li_2CO_3
- LiOH
- KCl

Byproducts

Spent Brine

Salts - Sludge

waterinmining

2016 8th International Congress on Water Management in Mining
Mineral Resource and Reserve Reporting For Brine Deposits

Application of Hydrogeological Concepts
Brine Resources and Reserves

Increasing level of geological knowledge and confidence

Modifying Factors: consideration of mining, processing, economics, marketing, legal, environmental, social and governmental factors
Brine Exploration Methods

- **Brine Samples**
 Elemental analysis of brine samples collected from representative sampling depths

- **Hydraulic Conductivity**
 Estimated from in-situ testing (e.g., packer testing, short-term bore hole tests, pumping tests) or ex-situ laboratory testing (e.g., ASTM)

- **Specific yield (Sy) or Specific storage (Ss)**
 Approximated through in-situ testing (pumping tests) or ex-situ laboratory testing (e.g., RBRC - relative brine release capacity)
Matrix “Sampling” – In Situ
Brine Resource

What is the challenge?

- **Dynamic Resource** - Brine moves.....
- Resource Volume - Aquifer volume and specific yield
- Permeability governs rate of extraction
- Once the pump is on; the system is ON!
- Weather plays major role
- Sampling storage
- Spent brine disposal
Brine Resource: What are we looking for?

- **Brine Volume**
 - Lateral boundaries
 - Vertical distribution
 - Specific Yield (Sy) or specific storage (Ss) for confined zones
 - Effective porosity (he)
- **Transmissivity, Hydraulic Conductivity** (lateral and vertical)
- **Dispersivity** (longitudinal and transversal)
- **Assays** (Li, K, B, etc.)
- **Dilution** (e.g. presence of fresh water, brackish, low grade)
Factors that matter: Extractability

- In-situ recovery
- Brine aquifer characteristics
 - Characteristic porosity
 - Specific yield
 - Transmissivity
 - Heterogeneity of stratigraphy
 - Grade distribution
Extractability

Volume of brine resource = Storage (Sy/Ss) x Volume of host aquifer
Extractability

- Production well
- Initial brine elevation
- Specific retention loss, S_r
- Loss due to minimum well drawdown
- Brine elevation during exploitation
- Reserve base subject to an in-situ recovery factor
Numerical model is used for brine projects as “dynamic” resource model to support mineral reserve estimates.

- Brine movement is a 3D process.
- Numerical model combines geology, fresh water and brine flows, density driven flow, and optimal setting for production wells.
- Fresh water intrusion and dilution effect must be considered (aquifers, rivers, precipitation events)

Model predicts:
- Extracted brine volume over time
- Brine chemistry in time
Brine Concentration over Time

Initial Conditions (0 years)

20 years of production

100 years of production
Numerical Groundwater Model for Brine Projects

Quantity

Quality

- **a)** Predicted total pumping rate and average drawdown in brine extraction wells
- **b)** Predicted average concentration of Li, K, and B
Take Home Message

• Dynamic Resource
• Hydrogeologist is the new “mine engineer”
• Continuous update and calibration to the numerical dynamic model throughout the LoM