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Abstract This study describes a general liquefaction flow

instability criterion for elastoplastic soils based on the

concept of loss of uniqueness. We apply the criterion to the

general case of axisymmetric loading and invoke the con-

cepts of effective stresses and loss of controllability to

arrive at a general criterion for the onset of liquefaction

flow. The criterion is used in conjunction with an elasto-

plastic model for sands to generate numerical simulations.

The numerical results are compared with experimental

evidence to give the following insights into predicting

liquefaction. (1) The onset of liquefaction flow is a state of

instability occurring under both monotonic and cyclic tests,

and coincides with loss of controllability. (2) The criterion

proposed herein clearly and naturally differentiates

between liquefaction flow (instability) and cyclic mobility.

(3) Flow liquefaction not only depends on the potential of

the material to generate positive excess pore pressures, but

more importantly, it also depends on the current state of the

material, which is rarely predicted by phenomenology.

Keywords Elastoplasticity � Flow liquefaction �
Modeling � Sands � Undrained instabilities

List of symbols

A0 Material constant in Dafalias Manzari model

Ad Positive scaling function of dilatancy

ch Material constant in Dafalias Manzari model

d2W Second-order work per unit volume

e Current void ratio

ec Void ratio on critical state line

e0 Initial void ratio

ec0 Critical state line material constant

F Yield surface

G Shear modulus

G0 Elastic shear modulus

H Hardening modulus

HL Critical hardening modulus

h Positive state variable in Dafalias Manzari model

h0 Material constant in Dafalias Manzari model

K Bulk modulus

M Critical stress ratio

m Material constant in Dafalias Manzari model

Mb Bounding stress ratio

Md Dilatancy stress ratio

nb Material constant in Dafalias Manzari model

nd Material constant in Dafalias Manzari model

gin Initial value of g at initiation of a new loading

process

p Volumetric stress

_p Volumetric stress rate

Pat Atmospheric pressure

Q Plastic potential

q Deviatoric stress

_q Deviatoric stress rate

z Fabric dilatancy factor

zmax Material constant in Dafalias Manzari model

a Back stress ratio

_a Evolution law for back stress
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b Dilatancy

_� Strain vector increment

_�a Axial strain rate

_�r Radial strain rate

_�s Total deviatoric strain rate

_�e
s Elastic deviatoric strain rate

_�p
s Plastic deviatoric strain rate

_�v Total volumetric strain rate

_�e
v Elastic volumetric strain rate

_�p
v Plastic volumetric strain rate

g Stress ratio

v Poisson’s ratio

w State parameter

kc Critical state line material constant

ra Axial stress

rr Radial stress

_ra Axial stress rate

_rr Radial stress rate

n Critical state line material constant

1 Introduction

Liquefaction is one of the most elusive concepts in geo-

technics due to its physical complexity and its relatively lax

definition. Loosely defined, liquefaction can be associated

with phenomena giving rise to loss of shearing resistance or

the development of excessive strains, typically accompanied

by increases in excess pore water pressures [24]. An alter-

native definition, typically used in mechanics, is that lique-

faction is the phenomenon of vanishing inter-granular

contact forces for some particular loading path [9]. More

recently, the phenomenon has been divided into flow liq-

uefaction and cyclic mobility [16, 24]. Flow liquefaction is

associated with a state of instability and sudden increases in

strain and pore pressures. It has been shown that flow liq-

uefaction can be induced under monotonic or cyclic loading

[6, 16, 17, 32]. This study provides a criterion for the onset

of flow liquefaction instability. We treat flow liquefaction as

an instability and make no distinction between monotonic

and cyclic loads, thereby showing that this instability is a

function of the state [2].

To date, there have been many attempts to detect the

onset of flow liquefaction experimentally [1, 7, 13, 14, 27,

28, 30, 32, 34, 35]. On the theoretical side, different

authors [12] have provided a criterion for loss of unique-

ness that can be linked to a loss of stability in solids. Partly

based on this criterion, works in [2, 4, 10, 11, 17, 23] and

others have developed studies related to flow liquefaction,

mostly for static liquefaction. In this study, besides deriv-

ing a general criterion for flow liquefaction, we begin to

answer the following questions:

1. Is there a fundamental difference between liquefaction

occurring under monotonic and cyclic loading?

2. Can analytical models differentiate between flow

liquefaction and cyclic mobility?

In this work, we apply the notions of loss of uniqueness

and loss of stability to a general class of isotropic elasto-

plastic models to apply a specific criterion for the onset of

flow liquefaction. By choice, we make no distinction

between so-called static liquefaction (e.g., [2]) and cyclic

or dynamic liquefaction. The criterion is specialized to the

context of classical ‘triaxial’ conditions applicable in the

laboratory. The criterion is then adapted to a particular

elastoplastic model capable of simulating cyclic and

monotonic loading in sands [8]. We show that the resulting

criterion is compatible with both the concept of loss of

controllability [23] and the second-order work [10].

The paper is organized as follows. The first section of

this study, Flow Liquefaction Criterion, shows the insta-

bility criterion using the concept of loss of uniqueness for a

general family of isotropic elastoplastic constitutive mod-

els. The section ‘Constitutive Model’ presents the main

features of the constitutive model used. The ‘Numerical

simulations’ section presents three numerical simulations

for prediction of flow liquefaction and compares them with

laboratory experiments. Findings from the application of

the criterion to each experiment are highlighted in the

‘Conclusions’ section.

2 Flow liquefaction criterion

For the sake of simplicity, and to validate our model

against experimental data, we limit the following deriva-

tion to infinitesimal and axisymmetric undrained condi-

tions. As shown before, loss of uniqueness requires

[2, 3, 12]

_r½ �½ � : _�½ �½ � ¼ 0 ð1Þ

where _�½ �½ � ¼ _�� � _� is the jump in the strain rate due to

potentially duplicate solutions (v*, v) for the velocity field.

Also, _r½ �½ � is the jump in the effective stress rate tensor,

induced by the jump in the strain rate tensor. We note that

the loss of uniqueness criterion begins with the total stress

tensor but boils down to the expression above, given the

undrained conditions imposed herein (see [2] for a

complete argument). Now, under triaxial (axisymmetric)

conditions, the above criterion reduces to

_p½ �½ � _�v½ �½ � þ _q½ �½ � _�s½ �½ � ¼ 0 ð2Þ

where _�v ¼ _�a þ 2_�r is the rate of volumetric strain and

_�s ¼ 2=3ð_�a þ _�rÞ is the deviatoric component of the strain

rate. Also, _p ¼ 1=3ð _ra þ 2 _rrÞ is the effective pressure rate
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and _q ¼ _ra � _rr is the deviatoric stress rate. We note the

usage of Cambridge p-q stress invariants to describe tri-

axial conditions. Finally, _ra is the axial total stress rate and

_rr is its radial counterpart.

Assuming a rate form for the constitutive relation, we

typically write the relation between the effective stress rate

and the total strain rate such that

_p
_q

� �
¼ Cpp Cpq

Cqp Cqq

� �
_�v

_�s

� �
ð3Þ

where the constitutive matrix is furnished by the specific

constitutive model of choice. Further, under undrained

conditions, and assuming incompressible fluid and solid

constituents, we require that _�v ¼ 0 and then use this fact

together with Eqs. (2) and (3) to get that

Cqq _�s½ �½ �2¼ 0 ð4Þ

which implies in general that the shear component of the

constitutive equation must vanish, i.e., Cqq = 0. This

condition will furnish a general criterion for detecting flow

liquefaction instability. We will adapt this general criterion

to the case of the Manzari-Dafalias [8] constitutive model

in the next section.

An interesting angle to observe is the similarity of this

approach with the concepts of loss of controllability [23]

and second-order work [10]. One can show that essentially

Eq. (2) is the condition for nil second-order work. On the

other hand, Nova [23] proposed the concept of loss of

controllability under elemental test conditions. For

instance, under undrained triaxial conditions, the volu-

metric strain rate and the deviatoric stress rates are con-

trolled, given pressure increments and shear strain

increments, such that.

_�v

_q

� �
¼

C�1
pp �CpqC�1

pp

CqpC�1
pp Cqq � CpqCqpC�1

pp

" #
_p
_�s

� �
ð5Þ

Here, we look for the vanishing of the determinant of the

matrix relating the controlled variables on the left to the

emerging or responding variables on the right. The

requirement of singularity implies Cqq/Cpp = 0 which, as

before, requires

Cqq ¼ 0 ð6Þ

Hence, the criterion presented herein, based on the

concept of loss of uniqueness and imposing undrained

conditions and effective stresses, coincides with the

concept of second-order work and the concept of

controllability. This establishes a necessary condition for

flow liquefaction instability, and we will apply this

criterion to a particular constitutive model in the next

section. As it was already mentioned, the criterion is

general in the sense that it applies to any elastoplastic

constitutive model of the form shown in Eq. (3). It

rigorously applies to axisymmetric conditions of loading.

Under conditions of different magnitude of stress in the

three principal directions, the liquefaction criterion is only

an approximation.

If one analyzes the mode of deformation as done by Nova

[23], one can show that the corresponding increase in de-

viatoric strain is indefinite, accompanied by a corresponding

increase in pore pressure. This is what Nova calls loss of

controllability, which is identical to what we define here to

be an instability: a large increase in response (e.g., pore

pressures) due to a relatively small increase in excitation.

3 Constitutive model

Here, we briefly describe the Manzari-Dafalias [21] model

with recent modifications [8] aimed at accounting for

changes in fabric that might ultimately affect dilatancy. For

a more complete description of the model, interested

readers are referred to the original papers cited above. As

shown in the literature, the Dafalias and Manzari consti-

tutive model has been amply tested for simulating the

behavior of granular soils subjected to monotonic and

cyclic loading [15, 22, 29].

The constitutive model is framed in the critical state soil

mechanics concept [26], and the elastic response is hypo-

elastic. The shear and bulk moduli are given such that

G ¼ G0pat

ð2:97� eÞ2

1þ e

p

pat

� �1=2

and K ¼ 2ð1þ mÞ
3ð1� 2mÞG ð7Þ

where G0 is a constant, m is Poisson’s ratio, e is the current

void ratio, and pat is the atmospheric pressure. The elastic

region is enclosed by a yield surface in effective stress

space which defines a wedge

Fðg; aÞ ¼ g� aj j � m ð8Þ

with g = q/p as the stress ratio, a as the back stress, and m

as a constant defining the width of the wedge so that in p-q

space, the wedge has an opening of 2mp at any value p.

Figure 1 shows the geometrical attributes of the model in

effective stress space. The inclination of the wedge

defining the elastic region is given by the back stress

whose evolution is governed by a kinematic hardening law

_a ¼ H _�p
s ð9Þ

where H is the hardening modulus. To complete the

description of the constitutive model, evolution of the hard-

ening modulus H and dilatancy b must still be explained.

The hardening modulus is a function of the state of the

material whose sign is controlled by its relative distance to

the bounding stress, i.e.,
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H ¼ hðMb � gÞ with h ¼ G0h0ð1� cheÞ
jg� ginj

p

pat

� ��1=2

ð10Þ

where h is a positive function, Mb is the bounding stress

ratio, and h0 and ch are positive constants. The evolution of

the dilatancy b is given by a function similar to that of the

hardening modulus, with the sign of the function dictated

by its distance to the dilatancy stress so that

b ¼ AdðMd � gÞ ð11Þ

with Md as the dilatancy stress ratio, as shown in Fig. 1.

While the value of g is less than the value of Md, response

is contractive. For all other cases, the model predicts

dilation. The positive scaling function for dilatancy is

affected by changes in fabric such that

Ad ¼ A0 1þ szh ið Þ with _z ¼ �cz �_�p
v

� 	
ðszmax þ zÞ

ð12Þ

where A0 is a positive constant and s =±1 according to

g ¼ a� m. The brackets hi are Macaulay brackets repre-

senting a ramp function. In addition, zmax represents the

maximum possible value of the state parameter z.

The model is made to comply with critical state soil

mechanics by postulating exponential evolution equations

for the bounding and dilatancy stress ratios. They are

respectively,

Mb ¼ M expð�nbwÞ and Md ¼ M expðndwÞ ð13Þ

with nb and nd as positive constants. Conceptually, the

evolution equations shown above require Mb and Md to

coincide with M as w! 0, requiring its state to tend to

critical state. The state parameter w ¼ e� ec was defined by

Been and Jefferies [5] and measures the distance to the

critical state from the current state in void ratio space.

Finally, the critical state line is defined in void ratio space

according to the relationship proposed by Li and Wang [20]

ec ¼ ec0 � kc pc=patð Þn ð14Þ

with ec0 as the void ratio at pc = 0 and kc and n as

constants.

The Dafalias and Manzari [8] constitutive model can be

seen in the matrix form of Eq. (1) by re-sorting the additive

decomposition of incremental stress–strain relation as

follows

_�e
s ¼

_q

3G
_�e
v ¼

_p

K
ð15Þ

_�p
s ¼

_g
H

_ep
v ¼ b _ep

s



 

 ð16Þ

Superscripts e and p are the elastic and plastic part of

strains. The increment in stress ratio is calculated as

_g ¼ �g=p _pþ _q=p, where g = q/p. Based on the rates of

total volumetric and deviatoric strains, Eq. (3) especially

adapted to the Dafalias and Manzari [8] constitutive model

reads

_p
_q

� �
¼ 1

v
3KGþ KHp �3KGbsgnð_�p

s Þ
3KGg 3GHp� 3KGbgsgnð_�p

s Þ

� �
_�v

_�s

� �

ð17Þ

where v ¼ 3Gþ Hp� Kbgsgnð_�p
s Þ. Equation (6), which

indicates loss of uniqueness and the onset of flow

liquefaction, when especially adapted to the Dafalias and

Manzari model is

Cpp ¼
3GðHp� Kbgsgnð_�p

s ÞÞ
v

¼ 0 ð18Þ

which, to be true in general, requires the quantity inside the

parenthesis to vanish.

In elastoplastic models, the hardening modulus H is an

indicator of the soil state. Andrade [2] deduced a critical

hardening modulus as a predictor of static liquefaction for

an elastoplastic constitutive model with two invariants.

From Eq. (18), a closed form of the hardening modulus that

is able to detect the onset of flow liquefaction can be

proposed

HL ¼
Kbg

p
sgnð_�p

s Þ ð19Þ

At the moment, when the hardening modulus equals the

critical hardening modulus (H – HL = 0), instability

occurs in the form of flow liquefaction. It should be

noted that for liquefaction instability to occur, undrained

kinematic conditions have to be imposed and the

liquefaction criterion H – HL = 0 must be met. The

instability criterion is a necessary buy not sufficient

condition for liquefaction. This means that if H – HL is

not zero, liquefaction cannot occur. On the other hand, if

H – HL = 0, then liquefaction may or may not occur.

Remark 1 The liquefaction criterion presented here is

general to any elastoplastic model that can be cast in the

Fig. 1 Schematic of yield surface and main ingredients plotted in

effective stress space. The shaded area represents the elastic region

whose inclination is dictated by a. Other important ingredients are the

bounding stress ratio Mb, dilatancy stress ratio Md and the critical

state ratio M
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form given in Eq. (3). Since it is clear that the criterion is a

function of the hardening modulus and the critical hard-

ening modulus so that H – HL = 0, we say that the crite-

rion for liquefaction is a function of the state. The notion of

state is rather general and dependent on the particular

model used. We define state as the given stress, strain, and

plastic internal variables affecting the ‘state’ of the mate-

rial. The plastic internal variables could be many. In the

particular model used here, these include void ratio and

density, but other models could include other variables, for

example fabric. The point is that since stress, strain, and

plastic internal variables affect the hardening modulus and

liquefaction criterion, we say that liquefaction here is

defined as a function of the state. This is in sharp contrast

with other criteria that define liquefaction as a material

property [2].

In the following section, the criterion given by Eq. (19)

will be evaluated by comparison against experimental

laboratory tests available in the literature.

4 Numerical simulations

In this section, we present numerical simulations using the

generalized flow liquefaction criterion introduced in Eq. (6)

and adapted to the Manzari-Dafalias model utilizing the

limiting hardening modulus encapsulated in Eq. (19). We

compare these simulations with three different sets of

experimental results where monotonic and cyclic stress

paths were imposed for Toyoura sand, Nevada sand, and

Dog’s Bay sand, respectively. With exception of the

parameters for the Toyoura sand, which were published by

Dafalias and Manzari [8], the material parameters were

calibrated based on the experiments which were simulated.

Hence, simulations for the Toyoura sand experiments fur-

nish a true prediction for the onset of liquefaction. The

material parameters used in the model are shown in

Table 1.

5 Verdugo and Ishihara [33] experiments

on Toyoura sand

Verdugo and Ishihara [33] developed a series of monotonic

undrained triaxial tests for a large range of initial com-

pression pressures on Toyoura sand. Figure 2a shows the

experiments with initial void ratio e0 = 0.833 with mean

pressure ranging from p0 = 100 to p0 = 3,000 kPa. The

onset of flow liquefaction, marked by a star symbol in

Fig. 2a, was obtained at the peak of deviatoric stress, and

the instability line was built by joining the points marking

the onset of flow liquefaction from each experiment. The

instability line is defined as the locus of points at which

flow liquefaction is initiated for the same void ratio under

undrained triaxial test [18, 31]. At this point, it is observed

experimentally that axial strains and excess pore pressure

increase significantly and suddenly. This is a direct result

of the test being stress controlled. If the test is strain

controlled, it can continue to impose increments in strain

and no such loss of controllability is observed.

Parallel to the experimental results, we perform simu-

lations on the Toyoura sand samples using the Dafalias and

Manzari [8] model with parameters shown in Table 1. The

same undrained boundary conditions are imposed and

the effective stress paths obtained are plotted in Fig. 2b.

The onset of flow liquefaction, as well as the instability line

in the simulations (Fig. 2b), was detected by tracking the

evolution of the critical hardening modulus and comparing

it with the hardening modulus H – HL. Figure 3 shows the

evolution of the criterion of flow liquefaction for the sim-

ulations shown in Fig. 2b. It can be observed that only

samples at 2,000 and 3,000 kPa confining pressures are

able to liquefy. As observed in the experiments, the sam-

ples at lower confinement never reach the onset of lique-

faction flow. In fact, the sample at 1,000 kPa confinement

suffers a phase transition, as captured by the numerical

simulation. These results clearly show that the criterion

(and model) is able to distinguish between mechanical

Table 1 Material parameters for the Manzari-Dafalias model for

Toyoura, Nevada and Dog’s Bay sand

Constant Toyoura sand Nevada sand Dog0s Bay sand

Elasticity

G0 125 125 140

v 0.05 0.05 0.05

Critical state

M 1.25 1.45 1.55

kc 0.019 0.09 0.009

ec0 0.934 0.737 1.015

n 0.7 1.0 0.5

Yield surface

m 0.01 0.01 0.03

Plastic modulus

h0 7.05 4.5 7.05

ch 0.968 1.05 0.968

nb 1.1 1.1 1.1

Dilatancy

A0 0.704 0.804 0.5

nd 3.5 5.5 3.5

Dilatancy-fabric

zmax 4 10 40

cz 600 500 2000

Acta Geotechnica

123



behavior corresponding to denser than critical to that of

sands that are looser than critical, or contractive. Con-

tractive behavior is a necessary condition for flow lique-

faction. Liquefaction is a function of the state.

6 Yamamuro and Covert [34] experiments

on Nevada sand

Figure 4a depicts the undrained triaxial tests on Nevada

sand performed by Yamamuro and Covert [34] for two

initial confining pressures p0 = 200 kPa and p0 = 350 kPa

with similar void ratios of e0 = 0.699 and e0 = 0.711,

respectively. Both of these samples liquefied as indicated

by the star symbol in Fig. 4a. Using the points demarking

the onset of liquefaction, they obtained the instability line

and compared it with the critical state line (CSL) or failure

line. Figure 4b shows the numerical simulations of these

monotonic tests, using the parameters reported in Table 1.

The onset of flow liquefaction in the simulations was

obtained by tracking the evolution of the critical hardening

modulus HL using Eq. (19), as illustrated before.

This data set is of particular interest because Yamamuro

and Covert [34] looked at both monotonic and cyclic

loading in Nevada sand at similar relative densities. This

comparison is interesting as some of the phenomenology

observed in monotonic tests is typically extrapolated to

predict the onset of instabilities observed in cyclic tests.

For example, the so-called instability line [19] is some-

times stretched out of context and used to predict the onset

of instability when crossed during both monotonic and

cyclic tests. Andrade [2] and others have shown that the

instability line is a necessary but not sufficient condition

for liquefaction flow. Hence, crossing the instability line

does not guarantee liquefaction flow either in monotonic or

cyclic tests. Another concept borrowed from monotonic

test phenomenology is that of the so-called collapse

boundary, which is interpreted as the locus defined by the

corresponding effective stress path (e.g., Fig. 4a) for which

flow liquefaction was observed during monotonic loading

(see Sladen et al. [28] and Alarcón-Guzmán et al. [1]). It is

believed that, for comparable states, when the effective

stress path during cyclic loading has crossed the instability

line and intercepts the collapse surface, the samples display

flow liquefaction instability. The above two criteria are

typically used to predict the onset of flow liquefaction

instability.

Figure 5a shows a cyclic triaxial compression test

developed by Yamamuro and Covert [34]. The sample was

isotropically compressed at p0 = 225 kPa, followed by

anisotropic compression until p = 250 and q = 75 kPa. At

this stage, an undrained cyclic triaxial test was performed

with a controlled stress amplitude of Dq = 46 kPa and an

initial void ratio of e0 = 0.712. Also, Fig. 5a shows the

instability line and the undrained monotonic triaxial test for

e0 = 0.711 of Fig. 4a. The monotonic stress path could be

considered to be the collapse boundary for the cyclic tri-

axial tests. Indeed, it is observed that the sample under

cyclic loading reaches flow liquefaction very close to the

Fig. 2 a Experiments in undrained triaxial test for void ratio e0 = 0.833 after Verdugo and Ishihara [33]. b Simulations of Verdugo and Ishihara

tests

Fig. 3 Evolution of the flow liquefaction criterion compared to axial

strains for simulations of undrained triaxial tests on Toyoura sands.

Onset of flow liquefaction is marked at points where H equals HL
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collapse boundary. However, this is an extrapolation, and

‘proximity’ to the collapse boundary varies. The liquefac-

tion flow criterion presented herein does not need to

assume any phenomenology a priori to detect the onset of

instability.

Figure 5b shows the results corresponding to the cyclic

test shown in Fig. 5a. As before, this simulation is run

using the parameters in Table 1, and the onset of instability

is obtained by tracking the liquefaction criterion as repor-

ted in Fig. 6. From Fig. 6, it is evident that the liquefaction

criterion H – HL is not continuous. This is due to the

elastic unloading experienced as the samples switch from

compression to extension. Naturally, the hardening modu-

lus, and hence the liquefaction criterion, is only defined

during plastic loading. Superimposed on Fig. 5b is the

monotonic effective stress path from Fig. 4b, which furnish

a collapse boundary. As in the experimental result, the

onset of liquefaction flow during cyclic loading is obtained

after crossing the instability line and close to the collapse

boundary. However, neither the instability line nor the

collapse boundary serve as predictors for flow liquefaction.

On the other hand, the criterion presented here did not need

to borrow from phenomenology and it is able to detect the

onset of flow liquefaction during both monotonic and

cyclic loading. This demonstrates that loss of controlla-

bility [23] is obtained during monotonic and cyclic tests

and that instability in both cases is a function of the state.

7 Qadimi and Coop [25] experiments

on Dog’s bay sand

Figure 7a depicts an undrained cyclic triaxial test per-

formed by Qadimi and Coop [25] using Dog’s Bay sand. It

is anisotropically consolidated under a K0 stress path. The

initial state of stresses before the undrained cyclic test was

q = 1,828 and p = 2,500 kPa. The void ratio before the

cyclic test was e0 = 0.982. The increment of deviatoric

stress for the undrained cyclic triaxial test was

Dq = 1,000 kPa. As shown in Fig. 7a, after a couple tens

of cycles, the specimen displayed liquefaction flow with a

Fig. 4 a Undrained triaxial tests of Yamamuro and Covert [34]. P0 = 200 kPa e0 = 0.699 and P0 = 350 kPa e0 = 0.711. b Simulations of

Yamamuro and Covert tests

Fig. 5 a Experimental monotonic and cyclic triaxial tests developed by Yamamuro and Covert [34] e & 0.7. b Simulations of monotonic and

cyclic triaxial tests developed by Yamamuro and Covert [34] e & 0.7

Fig. 6 Evolution of H – HL for the cyclic triaxial test of the

simulation in Fig. 5b. Onset of flow liquefaction under cyclic loading

conditions is marked by a star
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sudden increase in pore water pressure as evidenced by the

remarkable drop in effective pressure and the loss of con-

trollability (also see Fig. 10). This set of experiments is

particularly interesting because it helps illustrate the dif-

ference between flow liquefaction and cyclic mobility.

Parallel to the anisotropically consolidated test, we

performed a simulation with parameters specified in

Table 1. The effective stress path of the corresponding

simulation is shown in Fig. 7b. Similar to the actual

experiment, flow liquefaction is detected after 19 cycles.

As before, detection of flow liquefaction is signaled by

H – HL = 0, as shown in Fig. 8. The simulation repro-

duces faithfully the stress path and the onset of liquefac-

tion. Similar to the results obtained for the Yamamuro and

Covert [34] test, the current simulations display a loss of

controllability when the liquefaction criterion is met,

manifesting in an inability to further impose the prescribed

deviatoric stress increment Dq. At the onset of liquefaction,

the sample is very close to a phase transformation, but this

is never fully realized, as the sample never has the chance

to experience hardening because liquefaction and the

associated loss of controllability occur just before.

Similar to the anisotropically consolidated test shown

above, Qadimi and Coop [25] performed an undrained

cyclic test after isotropic consolidation. The void ratio for

this test was very similar to the above with e0 = 1.22.

Hence, these two tests provide a backdrop to evaluate the

differences between liquefaction flow and cyclic mobility.

Figure 9a shows a simulation of an undrained cyclic tri-

axial test isotropically compressed at p0 = 1,400 kPa as

performed by Qadimi and Coop [25]. The prescribed

increment of cyclic deviatoric stress is Dq = 280 kPa. One

hundred and fifty (150) cycles of deviatoric stress were

applied. Figure 9b shows the evolution of the criterion for

flow liquefaction (H – HL) for the numerical experiment

shown in Fig. 9a. Although there is a decrease in effective

mean pressure as a result of cyclic loading, the criterion for

liquefaction flow is never satisfied after 150 cycles. This

behavior is similar to that observed in the experiments

where cyclic mobility was observed, as opposed to lique-

faction flow.

The buildup of pore pressure generated in the two pre-

vious undrained cyclic triaxial tests (Figs. 7a and 9a) was

reported by Qadimi and Coop [25] and is redrawn in

Fig. 10. The buildup of pore pressure obtained in the

simulations is superimposed on the figure. Excess pore

water pressures, normalized by the mean pressure after

consolidation, are plotted in Fig. 10 as a function of the

number of cycles. It can be seen that the buildup of pore

water pressures is significantly different for the anisotrop-

ically consolidated sample relative to the isotropically

consolidated counterpart. There is a sharp increase in pore

pressures after a few tens of cycles in the anisotropic

sample. This is characteristic of liquefaction flow. On the

other hand, as it is characteristic of cyclic mobility, the

Fig. 7 a Experimental undrained cyclic triaxial test anisotropically consolidated with a K0 condition of e0 = 0.982, Dq = 1000 kPa by Qadimi

and Coop [25]. b Simulation of Qadimi and Coop [25] test

Fig. 8 Evolution of H – HL for the simulation of the anisotropically

consolidated undrained cyclic triaxial test performed by Qadimi and

Coop [25]
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isotropically consolidated sample displays a smooth

increase in pore pressures, without noticeable sudden

changes. In fact, as seen in Fig. 10, after 150 cycles, the

sample has reached about 50 % of the normalized pore

pressure increase experienced by the anisotropic sample.

This is emblematic of the mechanical difference between

liquefaction flow and cyclic mobility. As anticipated by

Alarcón-Guzmán et al. [1], flow liquefaction is an insta-

bility obtained as part of structural collapse in a sample of

sand. It typically displays sudden increases in strains and

excess pore pressure. On the other hand, cyclic mobility is

a constitutive response, with accumulation of strains and

excess pore pressures without exhibiting measurable

instabilities. We have shown that the liquefaction criterion

presented herein is able to distinguish between flow liq-

uefaction and cyclic mobility.

Remark 2 Both experiments and simulations are per-

formed under undrained kinematic conditions (constant

volume here) and prescribed changes in stress deviator.

The experiments which attain flow liquefaction seem to be

able to progress, but, if one observes, they have lost con-

trollability (i.e., the prescribed cycles of change in stress

deviator cannot be completed as specified). On the other

hand, the numerical simulations cannot continue at the

point of liquefaction, loose controllability, and crash.

Remark 3 One can observe from Fig. 9 (especially b) that

if the trend is continued, even after 200 cycles, simulations

remain stable and variations in deviator stress can still be

controlled. Now, what happens with the increase in pore

pressure is completely dependent on the dilatancy evolu-

tion, which is a feature of the plasticity model. The model

could be evolving dilatancy inaccurately. The main points

made by Figs. 7, 8, 9, 10 are (1) the simulations can cap-

ture the main features of the experiments, (2) show that the

model can detect liquefaction instability when it occurs,

and (3) show that liquefaction is an instability, whereas

cyclic mobility is not. Instability is never observed in the

isotropically consolidated sample, which simply reaches

critical state and displays the so-called butterfly effect,

never loosing controllability. Whereas the anisotropic

sample looses controllability after only 19 cycles, dis-

playing a sudden increase in pore pressures.

Remark 4 While no conclusive statements can be made

based on one example to differentiate flow liquefaction and

cyclic mobility, it is clear that this example shows vast

differences in the mechanism, with flow liquefaction being

associated with an unstable state. On the other hand, cyclic

mobility is an incremental state and does not display

unstable effects. This last statement is not new (e.g., [16]),

but the results shown in this study give a clear mechanics

Fig. 9 a Simulation of an undrained cyclic triaxial test isotropically compressed at p0 = 1,400 kPa in Dog0s Bay sand. Initial void ratio

e0 = 1.22. Increment of deviatoric cyclic stress Dq = 280 kPa at 150 loading cycles. b Evolution of the criterion for flow liquefaction for

simulation shown in Fig. 9a

Fig. 10 Buildup of excess pore pressure for the cyclic experiments

depicted in Figs. 7a, 9a plotted against number of cycles. Experiments

were performed by Qadimi and Coop [25]
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framework to differentiate between flow liquefaction and

cyclic mobility.

8 Conclusions

We have presented a general criterion for detecting the

onset of flow liquefaction and have applied it to a particular

elastoplastic constitutive model for sands capable of sim-

ulating the behavior of the material under monotonic and

cyclic tests. We have used three different sets of data to

illustrate the predictive capabilities of the proposed

criterion.

Based on the results obtained in this study, we reach the

following conclusions:

• The liquefaction criterion presented herein can detect

the onset of liquefaction flow under both monotonic

and cyclic conditions without resorting to assumptions

a priori.

• Flow liquefaction, as detected by the criterion presented

in Eq. (6), corresponds to a collapse or instability, which

is a function of the state of the material.

• As observed in experiments, both cyclic mobility and

flow liquefaction display increases in pore pressures,

with cyclic mobility producing gradual pore pressure

buildup and flow liquefaction producing sudden pore

pressure buildup as a result of material instability. The

criterion presented herein captures this difference as a

natural result of the state of the material.

• The instability line and the collapse boundary are

necessary conditions for instability but are certainly not

sufficient or predictive.

• The H – HL could help predict the liquefaction

potential for a given soil based on its state and imposed

loading path.
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technique 35:99–112

6. Castro G (1969). Liquefaction of sands, Harvard Soil Mechanics

Series, No.81, Pierce Hall

7. Castro G (1987). On the behaviour of soils during earthquake

liquefaction. Technical report, Geotechnical engineers Inc.,

Winchester, MA. 01890. USA

8. Dafalias YF, Manzari MT (2004) Simple plasticity sand model

accounting for fabric change effects. J Eng Mech 130(6):622–633

9. Darve F (1996) Liquefaction phenomenon of granular materials

and constitutive instability. Eng Comput 13(7):5–28

10. Darve F, Laouafa F (2000) Instabilities in granular materials and

application to landslides. Mech Cohesive-Frictional Mater 5(8):

627–652

11. Gajo A (2004) The influence of system compliance on collapse of

triaxial sand samples. Can Geotech J 41:257–273

12. Hill R (1958) A general theory of uniqueness and stability in

elastic-plastic solids. J Mech Phys Solids 6(3):236–249

13. Hyde A, Higuchi T, Yasuhara K (2006) Liquefaction, cyclic mobil-

ity, and failure of silt. J Geotech Geoenviron Eng 132(6):716–731

14. Ishihara K, Tatsuoka F, Yasuda S (1975) Undrained deformation

and liquefaction of sand under cyclic stress. Soils Found 15(1):

29–44

15. Jeremic B, Cheng Z, Taiebat M, Dafalias Y (2008) Numerical

simulation of fully saturated porous material. Int J Numer Anal

Meth Eng 24:1636–1660

16. Kramer SL (1996) Geotechnical earthquake engineering. Prentice

Hall International Series, New Jersey

17. Lade PV (1992) Static instability and liquefaction of loose fine

sandy slopes. J Geotech Eng 118:51–71

18. Lade PV (1994) Instability and liquefaction of granular materials.

Comput Geotech 16(2):123–151

19. Lade PV (1999) Instability of granular materials. In: Lade PV,

Yamamuro JA (eds) Physics and mechanics of soil liquefaction.

Balkema, Rotterdam, pp 3–16

20. Li XS, Wang Y (1998) Linear representation of steady-state line

for sand. J Geotech Geoenviron Eng 124(12):1215–1217

21. Manzari MT, Dafalias YF (1997) A critical state two-surface

plasticity model for sands. Géotechnique 47(2):255–272
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