Water Use Licence Application for the Abstraction of Groundwater at Kamiebees Farm 368/1, Northern Cape

Technical Motivation Report

Report Prepared for

SJR Boerdery CC

Report Number 552583/1

Report Prepared by

February 2020

Technical Motivation Report

SJR Boerdery CC

SRK Consulting (South Africa) (Pty) Ltd.

The Administrative Building Albion Spring 183 Main Rd Rondebosch 7700 Cape Town South Africa

Tel: +27 (0) 21 659 3060 Fax: +27 (0) 21 685 7105

e-mail: avicente@srk.co.za website: <u>www.srk.co.za</u>

SRK Project Number 552583

February 2020

Compiled by: Peer Reviewed by:

Annalisa Vicente Hydrogeologist

Des Visser Principal Hydrogeologist C Dalgliesh Registered EAP Partner

Email: avicente@srk.com

Authors:

Annalisa Vicente

Profile and Expertise of EAPs

SRK Consulting (South Africa) (Pty) Ltd (SRK) was appointed by SJR Boerdery CC (SJR Boerdery) to conduct the Water Use Licence Application (WULA) process required in terms of the National Water Act 36 of 1998 (NWA) for additional groundwater abstraction at Kamiebees Farm 368/1 in the Northern Cape.

SRK Consulting comprises over 1 400 professional staff worldwide, offering expertise in a wide range of environmental and engineering disciplines. SRK's Cape Town environmental department has a distinguished track record of managing WULA processes and has been practicing in the Western Cape since 1979. SRK has rigorous quality assurance standards and is ISO 9001 accredited.

The qualifications and experience of the key individual practitioners responsible for this project are detailed below.

Project Director and Reviewer: Christopher Dalgliesh, BBusSc (Hons); MPhil (EnvSci)

Certified with the Interim Board for Environmental Assessment Practitioners South Africa (CEAPSA)

Chris Dalgliesh is an SRK Director and Principal Environmental Consultant with over 33 years' experience, primarily in Southern Africa, West Africa, South America, the middle East and Asia. Chris has worked on a wide range of projects, notably in the natural resources, Oil & Gas, waste, infrastructure and industrial sectors. He has directed and managed numerous Environmental and Social Impact Assessments (ESIAs), in accordance with international standards (e.g. IFC). He regularly provides high level review of ESIAs, frequently directs Environmental and Social Due Diligence studies and monitors project on behalf of financial institutions, and also has a depth of experience in Strategic Environmental Assessment (SEA) and Resource Economics. He holds a BBusSci (Hons) and M Phil (Env) and is a Registered Environmental Assessment Practitioner.

Project Reviewer: Amy Hill (Hons)

Amy Hill is an Environmental Consultant at SRK Consulting and has 4 years of experience in the biodiversity and ecology sector. She is experienced in managing a number of Basic Assessment and Water Use Authorisation processes and has contributed to numerous Environmental Impact Assessment processes, notably in the commercial and industrial sectors. Amy has drafted Environmental Management Plans (EMPs), performed Environmental Control Officer (ECO) duties and coordinated stakeholder engagement processes. She holds a BSc (Hons) in Biodiversity and Ecology from the University of Stellenbosch.

Project Manager: Annalisa Vicente, BSc Hons (Environmental and Water Science)

Annalisa Vicente is a Hydrogeologist and Groundwater Modeller at SRK Consulting (South Africa) (Pty) Ltd. She specialises in 3-Dimensional Numerical Groundwater Modelling. She is therefore proficient in the characterization of groundwater, its occurrence, movement and hydrochemistry, elements needed for conceptual model and subsequent numerical model development. Projects themes include groundwater contamination investigations, groundwater supply, remediation and environmental risk assessments.

Statement of SRK Independence

Neither SRK Consulting (South Africa) (Pty) Ltd (SRK) nor any of the authors of this Report have any material present or contingent interest in the outcome of this Report, nor do they have any pecuniary or other interest that could be reasonably regarded as being capable of affecting their independence or that of SRK. SRK has no beneficial interest in the outcome of the assessment which is capable of affecting its independence.

Disclaimer

The opinions expressed in this Report have been based on the information supplied to SRK Consulting (South Africa) (Pty) Ltd (SRK) by SJR Boerdery CC. The opinions in this Report are provided in response to a specific request from SJR Boerdery CC to do so. SRK has exercised all due care in reviewing the supplied information. Whilst SRK has compared key supplied data with expected values, the accuracy of the results and conclusions from the review are entirely reliant on the accuracy and completeness of the supplied data. SRK does not accept responsibility for any errors or omissions in the supplied information and does not accept any consequential liability arising from commercial decisions or actions resulting from them. Opinions presented in this report apply to the site conditions and features as they existed at the time of SRK's investigations, and those reasonably foreseeable. These opinions do not necessarily apply to conditions and features that may arise after the date of this Report, about which SRK had no prior knowledge nor had the opportunity to evaluate.

Contents

1	Intr	oduction	1
	1.1	Introduction and background	1
	1.2	Purpose of the Report	1
	1.3	Structure of this Report	2
2	Reg	julatory Framework	4
	2.1	National Water Act 36 of 1998	4
		2.1.1 Water Use Licence Application and Appeals Regulation, 2017	4
		2.1.2 General Authorisation in terms of Section 39 of the NWA	4
3	Pro	ject Description	5
	3.1	Description of Project Area	5
	3.2	Description of Project	5
	3.3	Project Infrastructure	5
		3.3.1 Existing Production Boreholes	5
4	Des	cription of Groundwater Resources	8
	4.1	Geology	8
	4.2	Hydraulic Conductivity	8
	4.3	Groundwater Levels	9
	4.4	Groundwater Quality	.12
	4.5	Groundwater Recharge	.14
	4.6	Groundwater Modelling	.14
	4.7	Groundwater Availability Assessment	.14
	4.8	Nearby Groundwater Users	.16
5	Ass	essment of Potential Geohydrological Impacts	17
	5.1	Impact Rating Methodology	.17
	5.2	Impact Assessment	.17
		5.2.1 Impacts on Groundwater Quantity	.17
6	Sta	keholder Engagement	19
	6.1	Stakeholder Engagement Activities	.19
7	Mot	ivation in Terms of Section 27 of the NWA	20
8	Cor	nclusions and Recommendations	22
9	Ref	erences	24

Appendices

Appendix A Hydrogeological Assessment Report

List of Tables

Table 1-1:	Water use and applicant details	······································	1
Table 3-1:	Hydrocensus summary		6
Table 4-1:	Stratigraphy and lithology of the area surrounding the site		В
Table 4-2:	Summary of groundwater quality indicators of the tested water	er boreholes at Kamiebees12	2
Table 4-3:	Summary of groundwater corrosivity/scaling indicators of Kamiebees		
Table 4-4:	Summary of groundwater information for Quaternary Catchm	ent F30A1	5
Table 4-5:	Summary of recommended safe borehole yields	15	5
Table 5-1:	Impact rating assessment groundwater quantity – Operationa	ll Phase18	В
Table 7-1:	Motivation in terms of Section 27 of the NWA		C
Table 13-1:	Criteria used to determine the consequence of the impact	Error! Bookmark not defined	
Table 13-2:	Method used to determine the consequence score	Error! Bookmark not defined	
Table 13-3:	Probability classification	Error! Bookmark not defined	
Table 13-4:	Impact significance ratings	Error! Bookmark not defined	.
Table 13-5:	Impact status and confidence classification	Error! Bookmark not defined	

List of Figures

Figure 1-1:	Site locality	3
Figure 3-1:	Borehole pictures	6
Figure 3-2:	Hydrocensus borehole localities	7
Figure 4-1:	General geology	10
Figure 4-2:	Spot water levels and inferred groundwater flow direction	11

List of Abbreviations

С.	<i>circa</i> (approximately)
DWS	Department of Water and Sanitation
DWAF:	Department of Water Affairs and Forestry
EAP	Environmental Assessment Practitioner
EC	Electrical Conductivity
EIA	Environmental Impact Assessment
e-WULAAS	Electronic Water Use Application and Authorisation System
GA	General Authorisation
KL /a	Kilolitres per annum
KL /d	Kilolitresper day
KL /h	Kilolitres per hour
KL /m	Kilolitres per month
mamsl	metres above mean sea level
mbgl	metres below ground level
µg/L	micro-grams per litre
mg/L	milligrams per litre
mS/m:	milli Siemens per metre
NGA	National Groundwater Archive
NWA	National Water Act 36 of 1998
S	Storativity
SANS	South African National Standards
SANAS	The South African National Accreditation System
SRK	SRK Consulting (South Africa) (Pty) Ltd
т	Transmissivity
WUA	Water Use Authorisation
WULA	Water Use Licence Application

Glossary

Aquifer:	A formation, group of formations, or part of a formation that contains sufficient saturated permeable material to store and transmit water; and to yield economical quantities of water to boreholes or springs. An aquifer is the storage medium from which groundwater is abstracted.
Baseline	Information gathered at the beginning of a study which describes the environment prior to development of a project, and against which predicted changes (impacts) are measured.
Construction phase	The stage of project development comprising site preparation as well as all construction activities associated with the development.
Electrical conductivity (EC):	Electrical conductivity is a measure of how well a material accommodates the transport of electric charge. The more salts dissolved in the water, the higher the EC value. It is used to estimate the amount of total dissolved salts, or the total amount of dissolved ions in the water.
Environmental Authorisation	The authorisation by a competent authority of a listed activity or specified activity in terms of National Environmental Management Act.
Environmental Impact Assessment	A process of evaluating the environmental and socio-economic consequences of a proposed course of action or project
Environmental Management Measures	Requirements or specifications for environmental management, as presented in the Environmental Management Plan, some of which are based on the mitigation measures identified in the EIA Report (in this case the EIA).
Environmental Management Programme	A description of the means for achieving environmental objectives and targets during all stages of a specific proposed activity.
Formation:	A body of rock identified by lithic characteristics and stratigraphic position. Different formations have different geohydrological properties.
Fracture:	Any break in a rock including cracks, joints and faults. Fractures can form the main conduits for groundwater flow. They can also form pathways for the movement of contamination.
Fractured-rock (Secondary) aquifer:	An aquifer in which groundwater moves through secondary openings and interstices, which developed after the rocks were formed. Approximately 90% of aquifers in South Africa are secondary in nature.
Groundwater:	Water found in the subsurface in the saturated zone below the water table. Groundwater is a source of water and is an integral part of the hydrological system.
Hydrogeology:	In South Africa, the term geohydrology and hydrogeology are used interchangeably. In theory hydrogeology is the study of geology from the perspective of its role and influence in hydrology, while geohydrology is the study of hydrology from the perspective of the influence on geology.
Impact	A change to the existing environment, either adverse or beneficial, that is directly or indirectly due to the development of the project and its associated activities.
Mitigation Measures	Actions identified to manage (avoid, minimise or optimise) potential environmental impacts which may result from the development.
Quaternary:	The Quaternary Period is a geologic time period that includes the most recent 2.6 million years, including the present day.

1 Introduction

1.1 Introduction and background

SJR Boerdery owns the Kamiebees Farm 368 Portion 1 (368/1), which is located c.85 km southeast of Springbok, Northern Cape (see Figure 1-1). The farm currently uses borehole water for irrigation, livestock watering and domestic purposes, sourced from three boreholes equipped with windpumps. SJR Boerdery (owner – Mr Johnnie van Niekerk) intends to supplement his livestock feed (for 300 sheep, 80 springboks and 20 Oryx) with Prickly Pear plants (*Upuntia Ficus Indica*), as the plant is cost-effective, uses minimal water and is a good source of protein. SJR Boerdery proposes to extend the prickly pear plot by 10 hectares (ha) (20 ha in total) by 2026 to harvest *c*.15 tons per annum. Water requirements are comparatively low (a prickly pear requires approximately three litres per week) equating to *c*.18 700 kilolitres per annum (KL/a). This requires a Water Use Licence Application (WULA) for additional groundwater abstraction from existing boreholes based on the recommended sustainable yields.

SRK Consulting (South Africa) (Pty) Ltd (SRK) was appointed by SJR Boerdery CC (SJR Boerdery) to conduct the WULA process for additional groundwater abstraction for irrigation, livestock watering and domestic purposes. A WUL is required from the Department of Water and Sanitation (DWS) for an activity (water use) listed and triggered in terms of Section 21 (a) of the National Water Act 36 of 1998 (NWA) - *taking water from a resource*. In addition, SRK was also appointed to compile a hydrogeological report in support of a WULA.

Applicant details are provided in Table 1-1.

 Table 1-1:
 Water use and applicant details

Project applicant:	Kamiebees Farm 368 Portion 1 (368/1)
Catchment:	F30A
Volume of water to be abstracted:	28 382 m ³ /annum
Contact person:	Johnnie Van Niekerk
Email:	johnnievn0920@gmail.com

A hydrogeological study conducted by SRK (SRK Report 55283, February 2020) has recommended a daily abstraction volume to avoid impacts on the aquifer and nearby groundwater users. Furthermore, the study has concluded that groundwater is not suitable for human consumption unless treated.

1.2 Purpose of the Report

This Technical Report has been prepared in support of the application for a WUA for the NWA Section 21(a) water use. It is intended to provide the competent authority, the DWS, with the relevant information required to consider the WUA application.

This report:

- Describes the water use;
- Assesses ground water impacts of the water use; and
- Outlines the proponent's NWA Section 27 Motivation for the water use.

The following guideline was taken into account in the compilation of this report:

• DWS Electronic Water Use Application and Authorisation System (e-WULAAS) (July 2017).

1.3 Structure of this Report

This report discusses: the motive for applying for a WULA, presents the project description, presents the regulatory framework, describes the groundwater resources, analyses the potential impacts and mitigation measures, outlines the proponent's motivation and summarises the key findings, conclusions and recommendations. To provide technical input to inform the WULA.

The report is structured in the following sections:

Section 1: Introduction

Provides an introduction and background to the proposed water use and applicant as well as outlines the purpose of this document.

Section 2: Regulatory Framework

Provides a brief summary and interpretation of the relevant legislation and describes the water uses associated with the project.

Section 3: Project Description

Briefly describes the groundwater resources and groundwater users that may potentially be affected by the project.

Section 4: Description of Groundwater Resources

Describes the methodologies employed and information used to conduct the hydrogeological investigation and impact assessment.

Section 5: Assessment of Potential Geohydrological Impacts

Describes and assesses the potential impacts of the water use utilising SRK's impact assessment methodology.

Section 6: Stakeholder Engagement

Describes stakeholder engagement to be undertaken for the WULA.

Section 7: Motivation in terms of Section 27 of the NWA

Outlines the proponent's motivation for the water use in terms of Section 27 of NWA.

Section 8: Conclusions and Recommendations

Summarises the key findings and provides conclusions and recommendations regarding the authorisation of the water use.

This report adheres to the contents for minimum information requirements to be submitted for water use technical geohydrology reports as set out in the DWS *Regulations Regarding the Procedural Requirements for Water Use Licence Applications and Appeals* (DWS, 2017).

SRK Consulting: Project No: 552583/1

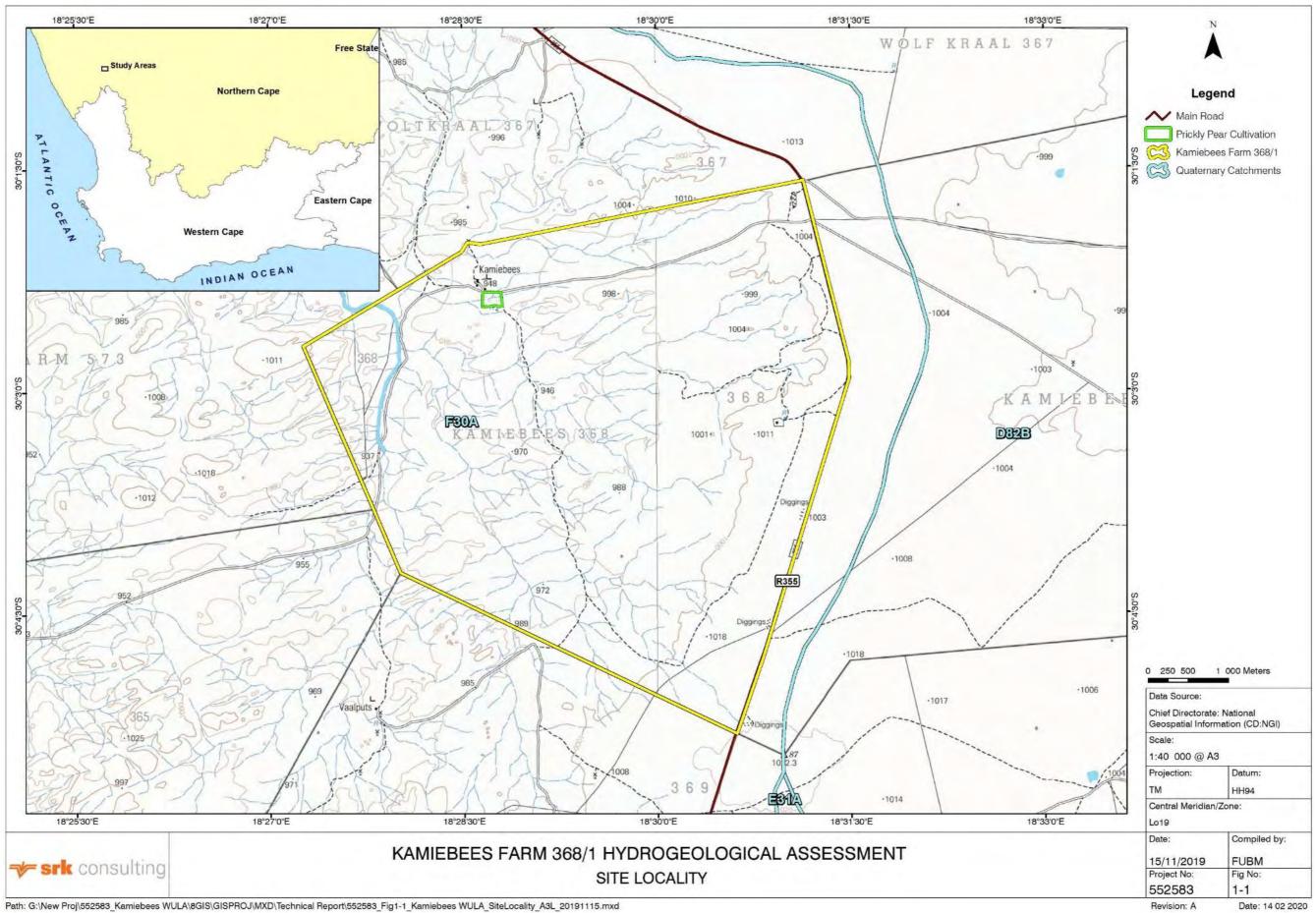


Figure 1-1: Site locality

2 Regulatory Framework

2.1 National Water Act 36 of 1998

Water use in South Africa is governed by the NWA (the Act). The competent authority is the DWS. The NWA recognises that water is a scarce and unevenly distributed national resource in South Africa. Its provisions are aimed at achieving sustainable and equitable use of water to the benefit of all users and to ensure protection of the aquatic ecosystems associated with South Africa's water resources. The provisions of the Act are aimed at discouraging pollution and wastage of water resources.

In terms of the Act, a land user, occupier or owner of land where an activity that causes or has the potential to cause pollution of a water resource has a duty to take measures to prevent pollution from occurring. If these measures are not taken, the responsible authority may do whatever is necessary to prevent the pollution or remedy its effects, and to recover all reasonable costs from the responsible party.

Section 21 of the NWA specifies a number of water uses, including section 21 (a) "*taking water from a water resource*". This water use requires authorisation in terms of Section 22 (1) of the Act (i.e. licencing), unless they are listed in Schedule 1 of the NWA, are an existing lawful use, fall under a General Authorisation (GA) or if the responsible authority waives the need for a licence.

2.1.1 Water Use Licence Application and Appeals Regulation, 2017

The WULA and Appeals Regulation (Regulation 267, which came into effect on 24 March 2017), promulgated in terms of the NWA, prescribe the procedure and requirements for WULAs as contemplated in Section 41 of the NWA; as well as an appeal in terms of Section 41(6) of the NWA.

More specifically, the Regulations provide clarity on:

- Authority decision making timeframes;
- Pre-application requirements;
- Consolidation of multiple WULAs;
- Technical Report content requirements;
- Financial surety following issuing of WUA; and
- Procedure for public participation in terms of S41(4) of NWA.

The SJR Boerdery is obliged to undertake a WULA process in accordance with the procedure stipulated in Regulation 267 under NWA.

2.1.2 General Authorisation in terms of Section 39 of the NWA

2.1.2.1 General Authorisation for Water Uses as defined in Section 21(a)

Government Notice (GN) 538 of 2016, promulgated in terms of Section 39 of NWA, specifies the requirements for GA in terms of Sections 21(a) of NWA, and defines the volume limits of groundwater that may be abstracted in terms of a GA. Any exceedances of these limits will require licensing.

In terms of GN 538, the maximum volume of water that may be taken from groundwater resources within drainage region F30A is 0 m² per hectare per year.

The proposed abstraction volumes (c.51 KL/d or c.18 700 KL/a) exceeds this limit and, as such, SJR Boerdery is required to apply for a WUL for groundwater abstraction at the site.

3 Project Description

3.1 Description of Project Area

The Kamiebees Farm 368/1 is located *c*.85 km south east of Springbok and *c*.16 km north of Vaalputs, Northern Cape (- 30.030852° S, 18.519925° E). The farm is located on the R355 Regional Route, where most of the area consists of farming (mainly livestock) and unoccupied municipal land.

Locally, the higher lying topographic regions are to the east of the Kamiebees Farm and slope in a north-westerly direction (Figure 2 3). The highest elevation on the farm is *c*.1 050 mamsl and the lowest elevation is *c*.920 mamsl. The average elevation is *c*.970 mamsl. The farm contains three non-perennial rivers which flow towards the Gasabrivier located on the north-west farm boundary. Regionally, surface and groundwater flows drain towards the Atlantic Ocean via the Buffels River (Department of Water and Sanitation, 2016).

The study area has a Mediterranean climate with cool wet winters (May to September) and hot dry summers (October to April). The quaternary catchment's (F30A) average rainfall is 162 mm/a (DWAF, 2005). Most of the rainfall (albeit minimal) occurs within the winter months where maximum rainfall is recorded in June (37 mm) and minimum rainfall is recorded in January (0 mm) (Weather and Climate, 2019).

3.2 Description of Project

The farm currently uses borehole water for irrigation, livestock watering and domestic purposes, sourced from three boreholes equipped with windpumps. SJR Boerdery intends to supplement the existing livestock feed (for 300 sheep, 80 springboks and 20 Oryx) with Prickly Pear plants. SJR Boerdery proposes to extend the prickly pear plot by 10 hectares (ha) (20 ha in total) by 2026 to harvest *c*.15 tons per annum, requiring an additional *c*.13 000 kilolitres (KL)annual groundwater demand, i.e. a total demand of *c*.18 700 KL/a.

3.3 Project Infrastructure

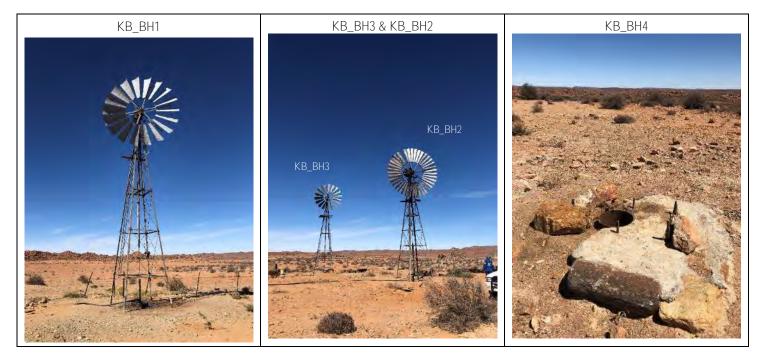
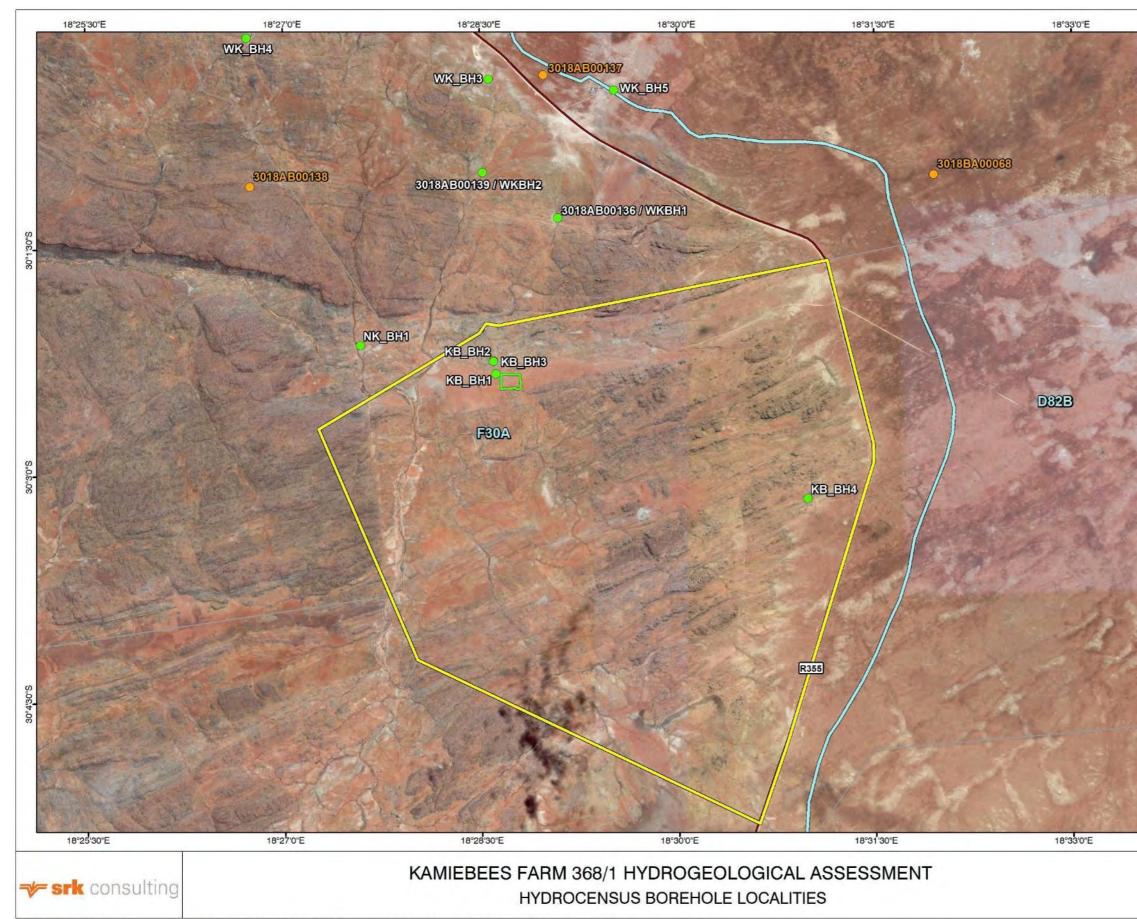
3.3.1 Existing Production Boreholes

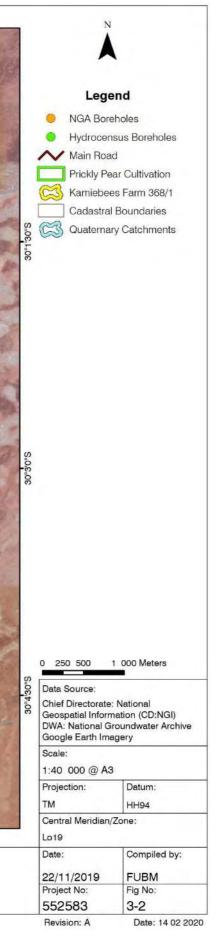
The four boreholes located on Kamiebees Farm 368/1 (Figure 3-2) consisted of three active boreholes (KB-BH1, KB-BH2 and KB-BH3) which pump groundwater to a central reservoir, supplying water to the farmstead, livestock and prickly pear orchard. Water levels are relatively shallow at *c*.10 mbgl Boreholes KB-BH2 and KB-BH3 are within 10 m of each other, whereas borehole KB-BH4 is located near the farmstead and is currently not in use as it is too low-yielding due to the drought. The three active boreholes are equipped with windpumps containing 60 mm Jooste cylinders capable of yielding a maximum of 770 litres per hour (L/h) (Jooste Cylinder & Pump Co, 2019). It is assumed that the wind is of sufficient strength to drive the windpumps approximately 25% of the time, thus the estimated average abstraction rate is *c*.0.053 L/s per boreholes are targeted for additional groundwater abstraction of the proposed WULA, prompting aquifer testing to determine the aquifer response and estimate the safe yields. All three boreholes are located on the same lineament (fault or fracture), implying that they abstract water from the same source. All borehole measurements and information gathered during the SRK hydrocensus (11 October 2019) is summarised in Table 3-1. In addition, pictures of the boreholes are presented in Figure 3-1.

The existing boreholes and associated infrastructure can accommodate the proposed increase in the groundwater abstraction (18 800 KL/a) and no new boreholes are required.

Table 3-1:Hydrocensus summary

Borehole ID	Farm Name	Latitude S	Longitude E	Owner	BH Depth (mbgl)	Casing Type/ Diameter (mm)	Water Level (mbgl)	Collar Height (magl)	Elevation (mamsl)	Yield (l/s)	EC (mS/m)	рН	Temp °C
KB_BH1		-30.03883	18.47695		54.30	170	12.75	0.33	947	0.05	238	8.57	25.4
KB_BH2	Kamiahaas	-30.03740	18.47665	Johnnie	30.20	170	10.82	0.26	945	0.05	161	8.22	26.4
KB_BH3	Kamiebees	-30.03748	18.47665	Van Niekerk	17.25	170	10.45	0.28	945	0.05	156	8.32	25.6
KB_BH4		-30.05273	18.516459		+100	150	37.69	0.05	949	N/A	94	8.09	25.7


Figure 3-1: Borehole pictures

SRK Consulting: Project No: 552583/1

Path: G:\New Proj\552583_Kamiebees WULA\8GIS\GISPROJ\MXD\Technical Report\552583_Fig3-2_Kamiebees WULA_HydrocensusBorehole_A3L_20191122.mxd

Figure 3-2: Hydrocensus borehole localities

A hydrogeological study was undertaken to determine the feasibility of additional groundwater abstraction. Secondary data was gathered to determine prevailing groundwater conditions, whereas current groundwater conditions were assessed by conducting aquifer yield tests (13-24 September 2019) and a hydrocensus (11 October 2019). The assessment of the yield test and hydrocensus are included in the hydrogeological study (*Hydrogeological Assessment of the Kamiebees Farm 368/1* ~ SRK, 2019) (seethe Hydrogeological Report). Descriptions of the groundwater resource in the study area are summarised in the proceeding sub-chapters.

4.1 Geology

4

The quaternary catchment F30A is classified as part of the Namaqualand East Groundwater Resource Unit (GRU). The Namaqualand East is underlain by rocks of the Nama and Vanrhynsdorp Groups, which is characterised as Metamorphic Terrane. The Namaqualand East typically contains Mokolian metasediments and metavolcanics consisting of gneisses, schists, amphibolite, metaquartzite, andesite, quartz porphyry, Intrusive granites, granodiorite, tonalite, mafic and ultramafic's. In addition, tertiary and quaternary fluvial and coastal deposits are often present (DWS, 2016).

The Kamiebees Farm is primarily underlain by Lekkerdrink Gneiss of the Little Namaqualand Suite and Grey Migmatitic Biotite Gneiss of the Kamiesberg Group. The southern section of the farm is underlain by Burtons Puts Granite, which form part of the younger Spektakel Suite (Council of Geoscience, 2010). A brief description of the site geology is presented in Table 4-1 and a representation of the geology is displayed in Figure 4-1.

Map Code	Formation/ Intrusive	Group/ Suite	Lithology
Nbur	Burtons Puts Granite	Spektakel Suite	Foliated to strongly foliated, orange-brown weathering, megacrystic granite with minor biotite and garnet.
Mkp	Grey migmatitic biotite gneiss	Kamiesberg Group	Grey-weathering, heterogenous, banded, migmatitic gneisses: includes rocks types such as migmatitic banded grey gneiss, semi- pelitic, calc-silicate and quartz-rich gneisses, mafic bands and granitoid lenses and dykes.
Nlek	Lekkerdrink Gneiss	Little Namaqualand Suite	Red-brown weathering, strongly foliated biotite augen and streaky gneiss with minor garnet, augen consist of aggregates of quartz and K-feldspar surrounded by biotite streaks. In-situ charnockitised gneiss typically brown with hypersthene replacing biotite.

 Table 4-1:
 Stratigraphy and lithology of the area surrounding the site

Note: Source - 1:250 000 Geological Series Sheet 3018 Loeriesfontein.

Several northwest-southeast striking faults have been mapped at the middle and western parts of Kamiebees Farm (Figure 4-1). The three targeted boreholes are all located on a single fault line, which intercepts the grey migmatitic biotite gneiss Formation.

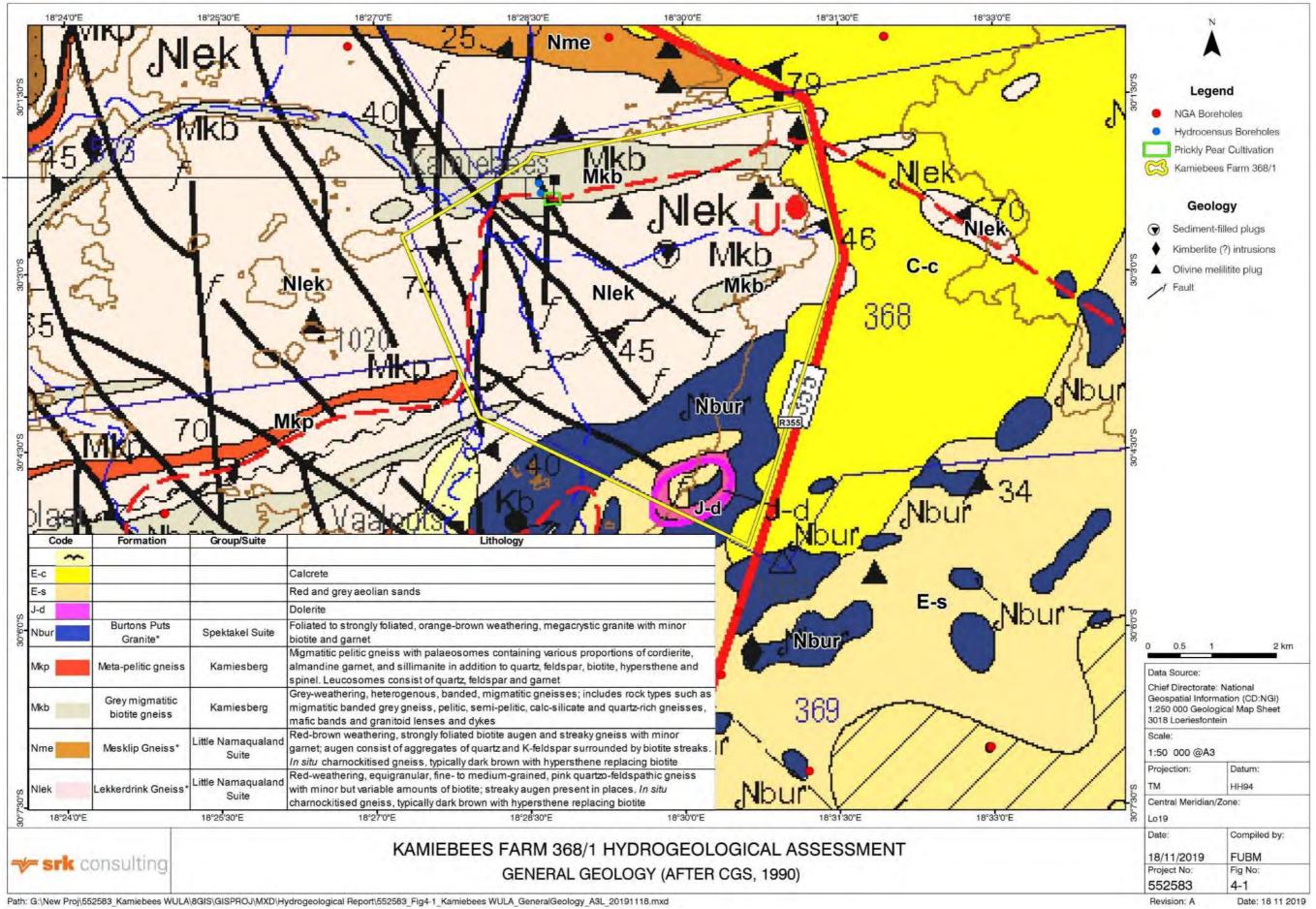
4.2 Hydraulic Conductivity

The hydraulic conductivity (K) is based on the transmissivity (T) values calculated from analysis of borehole pump test data by dividing T (m^2/d) by the saturation thickness (m), as well as using published values for similar aquifer types. The derived K values are summarised as follows:

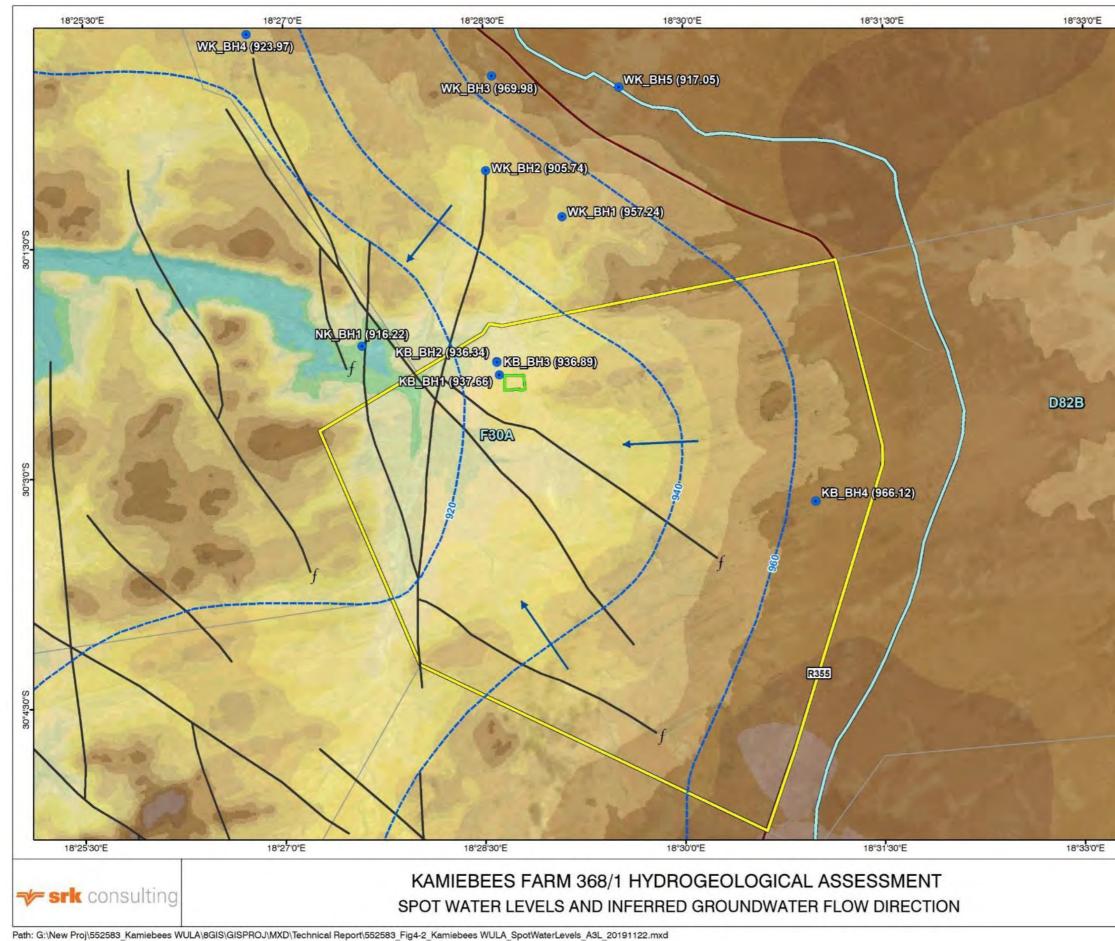
- K for fractured granite and gneiss: 43 to 2.2 x 10⁻⁴ m/d (Freeze and Cherry, 1979);
- K for unfractured granite and gneiss: 6.5 x 10⁻⁵ to 8.6 x 10⁻¹⁰ m/d (Freeze and Cherry, 1979);

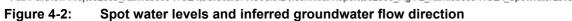
- K fractured-rock aquifers of F30A: 0.09 m/d (based on DWAF, 2005 GRA-2 data and the average T values from the aquifer tests. Transmissivity polygon for the 17.5 m²/d, i.e. 17.5 m²/d divided by GRA2 aquifer thickness of 188 m);
- K fractured-rock aquifer at KB-BH1: *c*.0.16 m/d (based on dividing the average pumping test derived T-value of *c*.6.67 m²/d by the *c*.41.6 m saturation depth of the borehole, i.e. 6.67÷41.6);
- K fractured-rock aquifer at KB-BH2: c.2.55 m/d (based on dividing the average pumping test derived T-value of c.17.5 m²/d by the c.6.8 m saturation depth of the borehole, i.e. 17.5÷6.8); and
- K fractured-rock aquifer at KB-BH3: *c*.0.97 m/d (based on dividing the average pumping test derived T-value of c.18.8 m²/d by the *c*.19.4 m saturation depth of the borehole, i.e. 18.8÷19.4).

Aquifer parameters, derived from yield testing at boreholes KB-BH1, KB-BH2 and KB-BH3 indicate T values between 6.67 and 18.81 m²/d.


A specific yield (S_y) of 0.0059 and storativity of 0.000049 is reported in the GRA-2 (DWAF, 2005) for the fractured-rock aquifers of F30A. Various pumping test data analysis methods yielded S_y values as follows:

- KB-BH1 range from 0.00020 to 0.00044, with an average of 0.00028;
- KB-BH2 range from 0.00017 to 0.00044, with an average of 0.00019; and
- KB-BH3 range from 0.00017 to 0.00044, with an average of 0.00018.


4.3 Groundwater Levels


Water levels derived from the aquifer tests indicate that groundwater levels range between 10 - 13 mbgl on the Kamiebees Farm. The neighbouring Nama-Khoi Municipal abandoned borehole (NK-BH1) displays a water level of 8.53 mbgl, no water levels could be taken on the Wolfkraal Farm, as all boreholes were equipped with windpumps preventing access. The Wolfkraal Farm owner (Mr Karel Louw), however, communicated that water levels range between 18 - 60 mbgl. These water levels vastly vary, and the reliability of this information is uncertain.

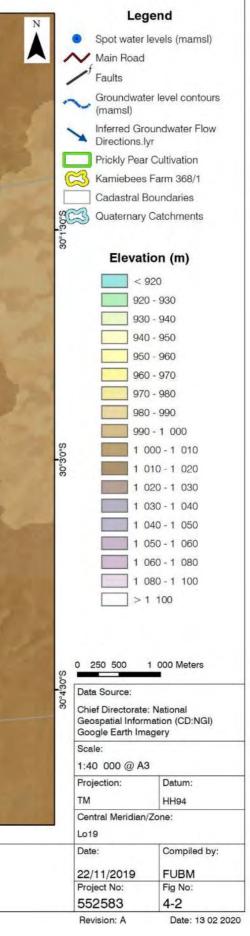

The groundwater flow at the site and its surrounds is inferred to be in a westerly direction (Figure 4-2) and regionally north-westwards towards the Buffels River.

Figure 4-1: General geology

4.4 Groundwater Quality

Water samples were collected for the three boreholes that underwent yield testing (KB-BH1, KB-BH2 and KB-BH3). Water quality analyses of the samples collected are summarised and compared to the *South African National Standard for Drinking Water (SANS 241:2015)* in Table 4-2.

Chemical and microbial concentration values exceeding the SANS 241:2015 acute and chronic health¹ risk related drinking limit are shown in bold red and those exceeding aesthetic² and operational³ limits in bold. Values indicated with <-symbol are below the laboratory's method detection limits. The laboratory reports are included in The Hydrogeology Assessment Report.

The water quality of boreholes KB-BH2 and KB-BH3 is similar in chemistry (little variation) which is expected as they are only 10 m apart. Borehole KB-BH1 displays slightly higher concentrations with poorer water quality. All boreholes exceed the SANS 241-2015 human health risk drinking limits for fluoride and sulfate concentrations. In addition, water at borehole KB-BH1 displayed above human health risk limits for nitrate and nitrite concentrations whilst at KB-BH2 and KB-BH3 manganese at both and iron at the latter, also exceed health related limits. From an aesthetic and operational risks, EC, TDS, chloride and sodium exceeds the limits

To render the water from these three boreholes fit for human drinking, it will have to be treated to reduce the exceedances to acceptable levels. Commonly used treatment options to reduce iron and manganese include oxidation (aeration, chlorination or ozonation), coagulation followed by settlement and filtration. To reduce sulphate, fluoride, sodium, chloride, TDS and EC (salinity) levels, the only treatment options desalination. pH balancing (stabilisation) might also be required⁴ as will disinfection.

The pH values for all the boreholes visited during the hydrocensus range between 7.76 to 8.57. Therefore, the groundwater in the study area is neutral to alkaline in nature.

Determinand	Units	KB-BH1	KB-BH2	KB-BH3	"SANS 241-1:2015 RECOMMENDED LIMITS & RISKS"
Ammonia	mg N/L	0.18	0.23	0.26	Aesthetic: ≤1.5
Chloride	mg Cl/L	831	585	628	Aesthetic: ≤ 300
Colour*	mg Pt-Co/L	<1	<1	<1	Aesthetic: ≤15
Dissolved Aluminium	µg Al/L	2.55	2.84	2.60	Operational: ≤300
Dissolved Antimony	µg Sb/L	0.43	0.45	0.39	Chronic Health: ≤20
Dissolved Arsenic	µg As/L	0.44	0.68	0.12	Chronic Health: ≤10
Dissolved Barium	µg Ba/L	35	64	67	Chronic Health: ≤700
Dissolved Boron	µg B/L	714	500	519	Chronic Health: ≤2 400
Dissolved Cadmium	µg Cd/L	0.02	0.06	0.04	Chronic Health: ≤3
Dissolved Calcium	mg Ca/L	235	128	134	Not specified

 Table 4-2:
 Summary of groundwater quality indicators of the tested water boreholes at Kamiebees

¹ Acute human health risk - Determinand that poses an immediate unacceptable human health risk if ingested if present at concentration values exceeding the numerical limits specified in the SANS 241-2015.

Chronic human health risk - Determinant that poses an unacceptable human health risk if ingested over an extended period if present at concentration values exceeding the numerical limits specified in the SANS 241-2015.

² Aesthetic risk - Determinand that taints water with respect to taste, odour or colour and that does not pose an unacceptable human health risk if present at concentration values exceeding the numerical limits specified in the SANS 241-2015.

³ Operational risk - Determinand that is essential for assessing the efficient operation of treatment systems and risks to infrastructure.

⁴ Dissolved Iron and other trace-metal analysis were done on a filtered (0.45 micron) and preserved (1% Ultrapure nitric acid) sample.

Iron and manganese concentrations may vary over time and the form of iron and manganese may be affected by chlorination. Pilot testing will increase the chance that any iron problems are detected before long term use of the water.

Determinand	Units	KB-BH1	KB-BH2	KB-BH3	"SANS 241-1:2015 RECOMMENDED LIMITS & RISKS"
Total Chromium	µg Cr/L	41.00	39.00	41.00	Chronic Health: ≤50
Dissolved Copper	µg Cu/L	0.98	1.07	1.06	Chronic Health: ≤2 000
Dissolved Iron	µg Fe/L	9.46	7.16	4.98	"Chronic Health: ≤2 000
Dissolved Lead	µg Pb/L	0.04	0.07	0.04	Chronic Health: ≤10
Dissolved Magnesium	mg Mg/L	102	65	66	Not specified
Dissolved Manganese	µg Mn/L	4.39	516.00	830.00	"Chronic Health: ≤ 400 Aesthetic: ≤100
Dissolved Mercury	µg Hg/L	0.94	0.10	0.09	Chronic Health: ≤6
Dissolved Nickel	µg Ni/L	1.21	0.72	0.58	Chronic Health: ≤70
Dissolved Selenium	µg Se/L	5.28	1.67	1.55	Chronic Health: ≤40
Dissolved Uranium	µg U/L	8.53	10.90	10.90	Chronic Health: ≤30
Dissolved Zinc	µg Zn/L	7.38	23.00	17.80	Aesthetic: ≤5 000
Electrical Conductivity at 25°C	mS/m	364	302	302	Aesthetic: ≤170
Fluoride	mg F/L	2.68	3.63	3.56	Chronic Health: ≤1.5
Nitrate	mg N/L	15.80	2.83	3.38	Acute Health: ≤11
Nitrite	mg N/L	<0.01	0.03	0.08	Acute Health: ≤0.9
Combined Nitrate + Nitrite (sum of Ratios)*		1.40	0.29	0.40	Acute Health: ≤1
pH at 25°C	pH units	7.40	7.40	7.40	Operational: ≥5.0 ≤9.7
Potassium	mg K/L	11.00	7.92	7.92	Not specified
Sodium	mg Na/L	504	498	498	Aesthetic: ≤200
Sulphate	mg SO₄/L	599	566	561	Aesthetic: ≤250 "Acute Health: ≤ 500
Total Alkalinity	mg CaCO ₃ /L	251	288	287	Not specified
Total Dissolved Solids at 180°C	mg/L	2 428	1 916	1 910	Aesthetic: ≤1 200
Total Iron	µg Fe/L	422	243	5 001	Aesthetic: ≤300 "Chronic Health: ≤2 000
Dissolved Manganese	µg Mn/L	4.39	516.00	830.00	Aesthetic: ≤100 "Chronic Health: ≤400
Turbidity	NTU	1.20	0.80	47.00	"Operational: ≤1 Aesthetic: ≤5"
E.coli	counts/100mL	0	0	0	Acute Health: 0
Faecal Coliforms	counts/100mL	0	0	0	Acute Health: 0
Total Coliforms	counts/100mL	0	0	3	Operational: ≤10

Exceeds health related SANS 241-2015 long-term drinking limits

Exceeds non-health related SANS 241-2015 long-term drinking limits, i.e. aesthetic and operational limits

Values indicated with <-symbol are below the laboratory analytical</th>NS = Not SpecifiedND = Notmethod's detection limitDetermined

Index	KB-BH1	KB-BH2	KB-BH3	Tendency
Langelier Index	0.14	-0.05	-0.03	Negative = Corroding tendency Positive = Scaling tendency
Ryznar Index	7.1	7.5	7.5	< 6.5 = Scale-forming tendency > 6.5 = Corrosive tendency
Larson-Skold Index for Mild Steel	3.6	2.5	2.6	< 0.8 = non-corrosive 0.8 - 1.2 = slightly corrosive > 1.2 = highly corrosive - increasing with rates

4.5 Groundwater Recharge

The F30A quaternary catchment has a low mean annual potential recharge of 0.16 mm/a (DWAF, 2005), which equates to 0.1% of the mean annual precipitation (MAP). The total recharge of the catchment according to the DWS' EWR report (DWS, 2016) is c.1.24 million kilolitres per annum (MKL/a), which equates to a mean recharge potential of 0.64 mm/a or 6.4 KL/ha/a.

4.6 Groundwater Modelling

Groundwater modelling was not deemed necessary due to the low yielding nature of the boreholes under consideration and the low groundwater demand of the applicant.

4.7 Groundwater Availability Assessment

The site is located in Quaternary Catchment F30A, which is c.43% dependent on groundwater. This catchment receives a relatively low mean annual precipitation of 162 mm/a (DWS, 2016) with a mean groundwater recharge of 1.24 MKL/a, or c.6.4 KL/ha/a (DWAF, 2016), which equates to a mean recharge of c.19 300 KL/a for the 3 012 ha Kamiebees Farm. The Drought Index is low at 3.84 years and groundwater baseflow contribution is zero (DWAF, 2005). The potential groundwater stored in the catchment's aquifers is c.91 872 MKL, or 471 KL/ha. Based on this storage potential, likely storage of the aquifers at the 3 012 ha Kamiebees Farm is c.1 418 650 KL

The catchment does not have any associated ecological water requirements but reserves 0.0026 MKL for Basic Human Needs (BHN) and 0.0026 MKL as a groundwater reserve. The catchment has a reported 0.696 MKL/a allocatable groundwater (DWS, 2016). The catchment's General Authorisation (GA) volume for taking groundwater is listed as 0 KL/hectare/annum (DWS, 2016).

The catchment is predominantly dependent on groundwater. Domestic use and small-scale livestock watering do not require licensing or registration as they are listed as a Schedule 1 authorisation. However, higher volume water use such as prickly pear irrigation, as proposed by the SJR Boerdery requires a WUL. The current groundwater abstraction at the Kamiebees Farm is *c*.5 000 KL/a, sourced from the three boreholes equipped with windpumps. This volume is used to irrigate 10 ha's of Prickly Pear crop, comprising of 3 ha mature crop and 7 ha of crop that will mature within two to three years. The 10 ha of mature crop will consume *c*.9 300 KL/a. The Kamiebees Farm is proposing to expand their Prickly Pear plot by a further 10 ha in about six to eight years', enquiring authorisation to abstract a maximum of 18 800 KL/a from the three boreholes. The recommended maximum safe tested yield for the three Kamiebees Farm boreholes is 28 382 KL/a, which equates to *c*.2% of the farm's potential aquifer storage. This requested volume is significantly lower than the recommended maximum safe yield (i.e. *c*.10 000 KL/a lower) of the three boreholes.

The groundwater information published for F30A by the DWAF (2005) and the DWS (2016) is summarised in Table 4-4.

Information Piece	Unit	Amount
Extent	ha	165 320
Potential Aquifer Storage	KL/catchment	91 871 900
	KL/ha	471
Mean Recharge to Groundwater	M KL/a	1.24
	KL/ha/a	2
Drought Index5	Years	3.84
Mean Groundwater River Baseflow Contribution	KL/a	0
Estimated Groundwater Abstraction (2003)	KL /a	241 247
Utilisable Groundwater Exploitation Potential	KL /a	1 068 185
Harvest Potential (Vegter, 1995)	KL /a	10 251 600
Catchment groundwater dependency (DWS, 2016)	%	43.41
Allocable groundwater (DWS, 2016)	M KL /a	0.696
Groundwater reserve (DWS, 2016)	M KL /a	0.0026
Mean Annual Precipitation (MAP)	mm	162

Table 4-4: Summary of groundwater information for Quaternary Catchment F30A

The safe yields of the Kamiebees boreholes were calculated using the aquifer transmissivity, storativity as well concurrent borehole abstractions. For example, the safe yield calculations of KB-BH1 accounts for the simultaneous abstraction of boreholes KB-BH2 and KB-BH3. A summary of the analyses results with recommended safe yields are presented in Table 4-5.

The safe yields for the following boreholes are:

- KB-BH1: 0.40 L/s
- KB-BH2: 0.20 L/s
- KB-BH3: 0.30 L/s

This equates to a total of 77.8 kilolitres per day or 28 382 KL per annum Table 4-5(). Comparing these yields to the groundwater availability in the quaternary catchment, it is apparent that the yield amounts to:

- Approximately >1 % of the groundwater potentially stored in the aquifers of the catchment;
- Approximately.4.7 % of the Mean Annual Groundwater Recharge; and
- Approximately.6.3 % of the Utilisable Groundwater Exploitation Potential

Table 4-5:	Summary of recommended safe borehole yields
------------	---

Borehole No.	Borehole depth	Rest Water Level	Pump Intake	Available Drawdow n	Pump Sensor Depth*	Maximum Yield		Maximum Abstraction Limit			
	mbgl	mbc	mbgl	m	mbc	L/s	KL/h	KL/d	KL/m	KL/a	
KB-BH1	54.3	12.41	50.0	47.0	45.0	0.40	1.440	34.6	1 051	12 614	
KB-BH2	17.3	10.16	15.0	4.5	13.5	0.20	0.720	17.3	526	6 307	
KB-BH3	30.2	10.56	27.0	16.0	25.0	0.30	1.080	25.9	788	9 461	
Total						0.90	3.240	77.8	2 365	28 382	

Note: Source - Aquifer test (AB Pumps, 2019)

⁵ The Drought Index or Di is used to assess the number of years required to bridge cycles of negligible or no aquifer recharge from rainfall, where groundwater abstracted will almost entirely be removed from aquifer storage.

4.8 Nearby Groundwater Users

The nearest groundwater user within a 4 km radius from the Kamiebees Farm is the northern neighbouring Wolfkraal Farm, owned by Karel Louw. Wolfkraal Farm has five boreholes, which consist of four active windpump equipped boreholes (WK-BH1, WK-BH2, WK-BH3 and WK-BH4) that supply drinking water to the livestock and domestic water to the farmhouse. The remaining borehole (WK-BH5) intermittently pumps water once every two weeks and serves as a supplementary borehole for the farmhouse (according to Mr Karel Louw). The farm is solely dependent on groundwater for livestock (sheep and chickens) watering and domestic purposes based on hydrocensus observations.

Water level measurements were unobtainable from the Wolfkraal Farm as they were all equipped, therefore all water level and borehole depth data were attained from Mr Karel Louw, which stated that water levels range between c.18 - 60 mbgl, with an average of c.50 mbgl. These water levels are deep and vary vastly making water supply and reliability uncertain. Furthermore, all windpump equipped boreholes depths range from 25 - 60 mbgl, with the exception of borehole WK-BH5, which is 100 mbgl deep (Mr Karel Louw, 2019). Borehole yields for Wolfkraal are inferred from Kamiebees yields as c.0.053 L/s per borehole. which are classified as low yields. A summary of Wolfkraal borehole information is presented in the hydrogeological report.

In addition, one borehole (NK-BH1) was located on the neighbouring Nama Khoi Municipal land. This borehole was abandoned due its low yields and destroyed infrastructure. The borehole is c.55 m deep and has a water level of c.8.5 mbgl.

5 Assessment of Potential Geohydrological Impacts

5.1 Impact Rating Methodology

The impacts associated with the water use were identified and assessed using the methodology in Appendix D of the Hydrogeological Assessment Report. This was done to determine the significance of each impact, both with and without the assumed implementation of mitigation measures.

The significance of an impact is defined as a combination of the consequence of the impact and the probability that the impact will occur. Ratings were allocated in terms of extent; intensity and duration for each of the identified impacts. The scores associated with these ratings were then used to determine the consequence rating of the impact. The probability classification of the impact was determined. Finally, the significance of the impact was ascertained by comparing the consequence rating to the probability classification.

The determined impact significance has the following implications:

- **Insignificant:** the potential impact is negligible and will not have an influence on the decision regarding the proposed activity/development.
- **Very Low:** the potential impact is very small and should not have any meaningful influence on the decision regarding the proposed activity/development.
- Low: the potential impact may not have any meaningful influence on the decision regarding the proposed activity/development.
- **Medium:** the potential impact should influence the decision regarding the proposed activity/development.
- High: the potential impact will affect the decision regarding the proposed activity/development.
- Very High: The proposed activity should only be approved under special circumstances.

In addition, impacts were considered in terms of their status, i.e. whether the impact would have an adverse (negative) or beneficial (positive) effect, and the degree of confidence with which the assessment was made was noted as being either: low, medium or high.

5.2 Impact Assessment

The following impact on groundwater has been identified and assessed:

• Reduced groundwater yields available to surrounding groundwater users during operations.

5.2.1 Impacts on Groundwater Quantity

The only concern that has been identified that could potentially impact the groundwater yield is abstraction of more than 77.8 KL/d (28 400 KL/a) of groundwater from the site's three boreholes resulting in drawdown in the local fractured-rock aquifer and which could risk the boreholes running temporarily dry.

Abstraction from boreholes normally results in a water level decline in the abstraction borehole and local surrounding area. As these three boreholes (KB-BH1, KB-BH2 and KB-BH3) are located on a single fault zone, this presents a higher impact should over abstraction and mutual interference occur. For example, boreholes KB-BH2 and KB-BH3, which have fairly shallow depths of 17.3 and 30.2 mbgl, respectively, might run dry should the groundwater table drops to these depths. The extent of the drawdown is dependent on the aquifer's hydraulic conductivity, storage and recharge. Due to the low hydraulic conductivity, the zone of drawdown at the site is likely to be limited and extending along the fault zone in a southeast-northwest direction. As the yield recommended for these boreholes are much lower than the maximum pump yields obtained during the step tests and CDT, coupled with the

observed limited drawdown during testing, a reported drought index of c.3.84 years (8 years were conservatively allowed in the tests analysis) and very high aquifer storage potential, the significance of impact of abstraction is expected to be **low**.

Best practise to reduce impact is to apply a 12 hour a day pumping schedule at a rate of 0.8 L/s for KB-BH1; 0.4 L/s for KB-BH2 and 0.6 L/s for KB-BH3. This will allow the borehole sufficient time (12 h/d) to recover after each day's abstraction schedule. Such reduced pumping hours will allow the water level to recover and will reduce the significance of the impact to **very low**. See impact rating in Table 5-1and the impact assessment methodology in Appendix D of the Hydrogeological Assessment Report.

Table 5-1:	Impact rating assessmen	t groundwater quantit	y – Operational Phase
------------	-------------------------	-----------------------	-----------------------

		•	U		•		•		
Mitigation	Impact no.	Extent	Intensity	Duration	Consequence	Probability	Significance	Status	Confidence
Without	1	Local	Low	Long-term	Low	Possible	LOW	-	High
		1	1	3	5				
Essential mitigation measures:									
I imit abstraction to ≤77.8 KI /d									

• Install a low-level cut-off switch to prevent the water level from dropping below 45 mbgl; 13.5 mbgl and 25 mbgl for boreholes KB-BH1, KB-BH2 and KB-BH3 respectively (if solar or electrical submersible pumps are used.)

• Implement and adhere to water saving procedures and methodologies, e.g. drip irrigation, covering reservoir to reduce evaporation, etc.

Best practice measures:

- Abstract groundwater volumes necessary for the proposed activity, i.e. c.18 700 KL/a or c.51 KL/d;
- Abstract groundwater for only 12 hours per day, or shorter to allow the borehole sufficient time to recover daily. Alternatively, use solar or windpumps.
- Abstract the required groundwater volume over 12-hour period per day based on the following rates:
 - o KB_BH1: 0.26 L/s;
 - o KB_BH2: 0.13 L/s; and
 - o KB_BH3: 0.20 L/s
- Implement a groundwater monitoring system to monitor groundwater quality, volumes abstracted and water levels. Natural mitigation:
- Very low groundwater abstraction, regular recharge (drought index of 3.8 years) and storage potential of the aquifers naturally mitigate the negative effects of abstraction on the aquifers of this area.

With	1	Local	Low	Long-term	Low	Improbable	VERY LOW	-	High
		1	1	3	5				

6 Stakeholder Engagement

The aim of stakeholder engagement is to ensure that stakeholders have adequate opportunity to provide input into the WULA process and raise their comments and concerns. More specifically, the objectives of stakeholder engagement are to:

- Identify stakeholders and inform them about the water use;
- Afford stakeholders the opportunity to identify relevant issues and concerns; and
- Provide stakeholders with the opportunity to review documentation and assist in identifying mitigation and management options to address potential environmental issues.

6.1 Stakeholder Engagement Activities

Stakeholder engagement on this WUA application will include the following activities:

- Advertise the WULA in the local press, indicating where this report can be accessed and inviting comments on the report and water use;
- Place a site notice at the facility;
- Notify neighbouring properties informing neighbours of the WULA, where this report can be accessed and inviting comments on the report and water use;
- Inform the local councillor of the WULA, where this report can be accessed and inviting comments on the report and water use; and
- Notify relevant organs of state (Department of Environmental Affairs, DWS, Kamiesberg Municipality and Nama Khoi Municipality) of the WUA application, where this report can be accessed and inviting comments on the report and water use.

The advertisement and correspondence will direct stakeholders to the report on SRK's website www.srk.co.za (via the 'Library' and 'Public Documents' links) and inform stakeholders of a 60 day comment period between 14 February 2020 and 17 April 2020. Stakeholder correspondence and the advertisement will be appended to the Final Technical Report to be submitted to the DWS. Issues raised, as well as responses from the proponent, EAP and/or hydrogeologist will also be summarised and included in the Final Technical Report.

7 Motivation in Terms of Section 27 of the NWA

Motivation in terms of Section 27 of the NWA for the water use associated with the project is provided in Table 7-1 below.

NWA S 27(1)	Aspect / Factor	Motivation
(a)	Existing lawful water use	The proposed water use is not expected to have a detrimental impact on other existing water users (see Section 5.2).
(b)	Need to redress the results of past racial and gender discrimination	Small scale water use for domestic and agricultural purposes is not intended to redress racial and gender discrimination.
(C)	Efficient and beneficial use of water in the public interest	This water use will increase Kamiebees Farm's, viability as a farming unit and increase employment opportunities
(d)(i)	Socio-economic impact of the water use or uses if authorised	The water use will increase employment opportunities for farm labours.
(d)(ii)	Socio-economic impact of the failure to authorise the water use or uses	The opportunity to reduce the use of potable water for irrigation, livestock watering and domestic purposes will be lost, and the benefit of using this water for other socially beneficial uses, e.g. increased employment of farm labourers, will be forgone.
(e)	Any catchment management strategy applicable to the relevant water resource	As the impact of the water use is assessed to be <i>very low</i> , it is unlikely that the water use would conflict with the catchment management strategy.
(f)	Likely effect of the water use to be authorised on the water resource and on other water users	It is highly unlikely that the abstraction of groundwater from the Kamiebees Farm would reduce groundwater yields at the Wolfkraal Farm, or any other farms. This is because the Wolfkraal boreholes are located on different lineaments (faults) and are spatially separated by solid, low permeable geological formations from the Kamiebees Farm boreholes. It is predicted that reported groundwater drawdown on Wofkraal would be attributed to the severe drought currently being experienced in the area.
(g)	The class and resource quality objectives of the water resource	The water use will not affect the class and resource quality objectives of water resources.
(h)	The investments already made and to be made by the water user in respect of the water use	Kamiebees Farm has already installed three boreholes, a reservoir and windpumps in order to abstract groundwater and use it for irrigation, livestock watering and domestic purposes. Investment has already been made by the applicant in terms of consultant fees for the WULA process (including associated specialist studies).
		Funding has also been allocated for the expansion of the prickly pear farm and associated infrastructure.
(i)	The strategic importance of the water use to be authorised	This is not a strategic water use.
(j)	The quality of the water in the water resource which may be required for the Reserve and for meeting international obligations.	Provided that mitigation measures stipulated above are implemented, the water use will not affect the water quality within the Reserve.

 Table 7-1:
 Motivation in terms of Section 27 of the NWA

8 Conclusions and Recommendations

Based on the data and information discussed in this report, the following can be concluded regarding the geohydrology and water borehole use at Kamiebees Farm 368/1 site:

- All three targeted boreholes were yield tested and the data analysed to determine their safe yields. The safe yields for boreholes KB-BH1, KB-BH2 and KB-BH3 are 0.4 L/s, 0.2 L/s and 0.3 L/s, respectively. This equates to a total of 77.8 KL of groundwater per day or 28 382 KL per annum, which are considered as conservatively low abstraction rates. Furthermore, SJR Boerdery plans on abstracting a groundwater volume of *c*.51 KL/d or *c*.18 700 KL/a, which is significantly lower (35% lower) than the recommended safe yield of the three boreholes; and
- Data gathered on the hydrogeology of the area and the localities of surrounding boreholes, imply
 that it is highly unlikely that the abstraction of groundwater from the Kamiebees Farm would
 negatively impact groundwater yields at Wolfkraal Farm or any other farms in the surrounding
 area. This statement is made on the basis that Wolfkraal's boreholes are located on different
 lineaments (faults) and are spatially separated by impenetrable, solid geological formations from
 the Kamiebees Farm boreholes. It is postulated that reported groundwater drawdown at Wolfkraal
 could be attributed to the severe drought being experienced in the region.

The proposed impact of groundwater abstraction is 'low' and with the implementation of essential mitigation measures, reduces to 'very low'. Therefore, there is no obvious reason why abstracting groundwater at a rate of c.51 KL/d or c.18 700 KL/a to support the proposed activity should not be authorised provided the recommendations in this report are implemented and adhered to.

Prepared by

Annalisa Vicente Environmental Consultant

Partner reviewed by

Reviewed by

SRK Consulting - Certified Electronic Signature ons 552583/43873/Report 6385-6400-296-HILL-14/02/20/20 This signature has been printed digitally. The Author has given permission forts use for this document. The details are stored in the SRK Signature Database

Amy Hill Environmental Consultant

SRK Consulting - Certified Electronic ST CO 552583/43873/Report 352-9328-735-DALC-14/02/2020 This signature has been printed digital intes given permission forts Q use forth is document. The details are sto the SRK Signature Database

Chris Dalgliesh SRK Partner

All data used as source material plus the text, tables, figures, and attachments of this document have been reviewed and prepared in accordance with generally accepted professional environmental practices.

9 References

Council for Geoscience (2010). Based on the 1:250 0000-Scale *Geological Map Sheet 3018 Loeriesfontein*, published by the Chief Directorate: Surveys and Mapping, Mowbray.

Department of Water Affairs and Forestry, (2005). *Groundwater Resource Assessment Phase 2*. Reports 2C and 3E. Pretoria.

Department of Water and Sanitation, South Africa, October 2016. *Determination of Ecological Water Requirements for Surface water (river, estuaries and wetlands) and Groundwater in the Lower Orange WMA*. Groundwater EWR report. Prepared by: WSM Leshika Consulting (Pty) Ltd. Authored by K. Sami. DWS Report No: RDM/WMA06/00/CON/COMP/0416.

Department of Water and Sanitation (2016). *National Water Act, 1998 (Act No. 36 Of 1998)*, Revision of General Authorisation for the Taking and Storing of Water. Notice 538 of 2016 published in Government Gazette No. 40243 of 2 September 2016.

Jooste Cylinder & Pump Co. (2019). *The Jooste AS borehole cylinder*. [online] Available at: https://www.joostecylinders.com/index.php?page=as-series-borehole-cylinder [Accessed 29 Oct. 2019].

South African National Standard (SANS) 241-1:2015. Drinking water Part 1: *Microbiological, physical, aesthetic and chemical determinands*. Edition 2, ISBN 978-0-626-29841-8.

South African National Standard (2003). SANS 10299-4:2003 Edition 1, *Development, Maintenance and Management of Groundwater Resources*, Part 4: Test-Pumping of Water Boreholes. ISBN 0-626-14912-6.

Appendices

Appendix A: Hydrogeological Assessment Report

Hydrogeological Assessment at Farm Kamiebees 368/1, Northern Cape

Hydrogeological Assessment Report

Report Prepared for

SJR Boerdery CC

Report Number 552583/1

Report Prepared by

February 2020

Hydrogeological Assessment at Farm Kamiebees 368/1, Northern Cape Hydrogeological Assessment Report

SJR Boerdery CC

SRK Consulting (South Africa) (Pty) Ltd.

The Administrative Building Albion Spring 183 Main Rd Rondebosch 7700 Cape Town South Africa

Tel: +27 (0) 21 659 3060 Fax: +27 (0) 21 685 7105

e-mail: capetown@srk.co.za website: <u>www.srk.co.za</u>

SRK Project Number 552583/1

February 2020

Compiled by:

Peer Reviewed by:

Annalisa Vicente Hydrogeologist Des Visser Principal Hydrogeologist C Dalgliesh Registered EAP Partner

Email: avicente@srk.com

Authors:

Annalisa Vicente

Statement of SRK Independence

Neither SRK Consulting (South Africa) (Pty) Ltd (SRK) nor any of the authors of this Report have any material present or contingent interest in the outcome of this Report, nor do they have any pecuniary or other interest that could be reasonably regarded as being capable of affecting their independence or that of SRK. SRK has no beneficial interest in the outcome of the assessment which is capable of affecting its independence.

Disclaimer

The opinions expressed in this Report have been based on the information supplied to SRK Consulting (South Africa) (Pty) Ltd (SRK) by SJR Boerdery CC. The opinions in this Report are provided in response to a specific request from SJR Boerdery CC to do so. SRK has exercised all due care in reviewing the supplied information. Whilst SRK has compared key supplied data with expected values, the accuracy of the results and conclusions from the review are entirely reliant on the accuracy and completeness of the supplied data. SRK does not accept responsibility for any errors or omissions in the supplied information and does not accept any consequential liability arising from commercial decisions or actions resulting from them. Opinions presented in this report apply to the site conditions and features as they existed at the time of SRK's investigations, and those reasonably foreseeable. These opinions do not necessarily apply to conditions and features that may arise after the date of this Report, about which SRK had no prior knowledge nor had the opportunity to evaluate.

Contents

1	Intr	oduction and Scope	1
	1.1	Appointment	1
	1.2	Background	1
	1.3	Structure of this Report	1
2	Geo	ographical Setting	3
	2.1	Site Locality	3
	2.2	Topography and Drainage	3
	2.3	Climate	3
3	Sco	ope of Work	2
4	Met	thodology for the Hydrogeological Assessment	2
	4.1	Desk Study	2
	4.2	Hydrocensus	2
	4.3	Geophysical Survey and Results	7
	4.4	Siting and Drilling of Boreholes	7
	4.5	Aquifer Yield Testing	7
	4.6	Groundwater Monitoring, Sampling and Chemical Analysis	10
	4.7	Groundwater Recharge	15
	4.8	Groundwater Modelling	15
	4.9	Groundwater Availability Assessment	15
5	Pre	vailing Groundwater Conditions	17
	5.1	Geology	17
	5.2	Acid Generation Capacity	17
	5.3	Hydrogeology	19
		5.3.1 Aquifers	19
		5.3.2 Unsaturated Zone	19
		5.3.3 Saturated Zone	19
		5.3.4 Hydraulic Conductivity	19
	5.4	Groundwater Levels	22
	5.5	Groundwater Potential Contaminants	22
	5.6	Groundwater Quality	22
6	Αqι	uifer Characterisation	24
	6.1	Groundwater Vulnerability	24
	6.2	Aquifer Classification	24
	6.3	Aquifer Protection Classification	25
7	Gro	oundwater Modelling	28
8	Ass	sessment of Potential Geohydrological Impacts	28
	8.1	Construction Phase	28
	8.2	Operational Phase	28

		8.2.1	Impacts on Groundwater Quantity	28
		8.2.2	Impacts on Groundwater Quality	29
		8.2.3	Groundwater Management	29
	8.3	Decor	nmissioning Phase	29
	8.4	Post-C	Dperational Phase	30
9	Gro	undw	ater Monitoring System	30
	9.1	Introd	uction	30
	9.2	Groun	dwater Monitoring Network	30
		9.2.1	Source Plume, Impact and Background Monitoring	30
		9.2.2	System Response Monitoring Network	30
		9.2.3	Monitoring Frequency	30
	9.3	Monito	pring Parameters	30
	9.4	Monito	pring Boreholes	31
10	Gro	undw	ater Environmental Management Programme	32
	10.1	Currer	nt Groundwater Conditions	32
	10.2	Predic	ted Impacts of Facility	32
	10.3	Mitiga	tion Measures	32
		10.3.1	Lowering of Groundwater Levels during Operation	32
		10.3.2	Rise of Groundwater Levels Post-Facility Operation	32
		10.3.3	Spread of Groundwater Pollution Post-Facility Operation	32
	10.4	Reme	diation of Physical Activity	32
	10.5	Reme	diation of Storage Facilities	32
	10.6	Reme	diation of Environmental Impacts	32
	10.7	Reme	diation of Water Resources Impacts	32
	10.8	Backfi	Iling of the Pits	32
11	Con	clusi	ons and Recommendations	33
12	Ref	erenc	es	35

Appendices

Appendix A	Pumping Test Data, Graphs and Photographs
Appendix B	Pumping Test Analysis Results
Appendix C	Laboratory Water Quality Reports
Appendix D	Impact Assessment Methodology Pumping Test Data, Graphs

List of Tables

Table 2-1:	Summary of mean monthly climate indicators	1
Table 4-1:	Hydrocensus summary	5

Table 4-2:	Hydrocensus borehole descriptions	5
Table 4-3:	Summary of step yield tests	8
Table 4-4:	Summary of constant discharge yield tests	8
Table 4-5:	Summary of recommended safe borehole yields	9
Table 4-6:	Summary of groundwater quality indicators of the tested water boreholes at Kamiebees	.11
Table 4-7:	Summary of groundwater corrosivity/scaling indicators of the tested water boreholes Kamiebees	
Table 4-8:	Summary of groundwater information for Quaternary Catchment F30A	.16
Table 5-1:	Stratigraphy and lithology of the area surrounding the site	.17
Table 5-2:	Summary of groundwater quality values of the F30A quaternary catchment	.22
Table 6-1:	Ratings for the aquifer quality management classification system	.25
Table 6-2:	Appropriate level of groundwater protection required	.25
Table 6-3:	Site aquifer classification and vulnerability assessment	.25
Table 8-1:	Impact rating assessment groundwater quantity – Operational Phase	.29
Table 13-1:	Criteria used to determine the consequence of the impact	.77
Table 13-2:	Method used to determine the consequence score	.77
Table 13-3:	Probability classification	.77
Table 13-4:	Impact significance ratings	.78
Table 13-5:	Impact status and confidence classification	78

List of Figures

Figure 2-1:	Average monthly rainfall, temperature and evaporation	4
Figure 2-2:	Site locality	0
Figure 2-3:	Topography and drainage	1
Figure 4-1:	Hydrocensus borehole localities	4
Figure 4-2:	Hydrocensus pictures	6
Figure 4-3:	Images of aquifer test boreholes	9
Figure 4-4:	Hydrocensus groundwater quality as EC (mS/m)	13
Figure 4-5:	Hydrocensus groundwater quality as pH	14
Figure 5-1:	General geology	18
Figure 5-2:	Hydrogeology	21
Figure 5-3:	Spot water levels and inferred regional groundwater flow direction	23
Figure 6-1:	Aquifer vulnerability	26
Figure 6-2:	Aquifer classification	27

List of Abbreviations

С.	circa (approximately)
CC	Close Corporation
CDT	Constant Discharge Test
DWS	Department of Water and Sanitation
DWAF:	Department of Water Affairs and Forestry
EAP	Environmental Assessment Practitioner
EC	Electrical Conductivity
EIA	Environmental Impact Assessment
e-WULAAS	Electronic Water Use Application and Authorisation System
GA	General Authorisation
GN	Government Notice
GRU	Groundwater Resource Unit
ha	hectare
hr	hour
L/s:	litres per second
MAP	Mean Annual Precipitation
KL /a	Kilolitres per annum
KL /d	Kilolitresper day
KL /h	Kilolitres per hour
KL /m	Kilolitres per month
mamsl	metres above mean sea level
mbc	metres below collar
mbgl	metres below ground level
µg/L	micro-grams per litre
mg/L	milligrams per litre
mS/m:	milli Siemens per metre
NGA	National Groundwater Archive
NWA	National Water Act 36 of 1998
S	Storativity
SANS	South African National Standards
SANAS	The South African National Accreditation System
SRK	SRK Consulting (South Africa) (Pty) Ltd
т	Transmissivity
WUA	Water Use Authorisation
WUL	Water Use Licence

Glossary

Aquifer:

saturated permeable material to store and transmit water; and to yield economical quantities of water to boreholes or springs. An aquifer is the storage medium from which groundwater is abstracted. Aspect An action, event, product or service, occurring as a component or result of an activity, which interacts with the existing environment (or which results in impacts to it) **Baseline** Information gathered at the beginning of a study which describes the environment prior to development of a project, and against which predicted changes (impacts) are measured. Construction The stage of project development comprising site preparation as well as all construction activities associated with the development. phase Design phase The stage during which detailed layout and development plans are prepared, including the drafting of contract documents for construction. **Drought Index** The Drought Index or Di is used to assess the number of years required to bridge cycles of negligible or no aquifer recharge from rainfall, where groundwater abstracted will almost entirely be removed from aquifer storage. Electrical Electrical conductivity is a measure of how well a material accommodates the conductivity transport of electric charge. The more salts dissolved in the water, the higher the (EC): EC value. It is used to estimate the amount of total dissolved salts, or the total amount of dissolved ions in the water. Ephemeral A water body that does not flow or contain water year-round, in response to seasonal rainfall and run-off. Environment The external circumstances, conditions and influences that surround and affect the existence and development of an individual, organism or group. These circumstances include biophysical, social, economic, historical and cultural aspects. Environmental The authorisation by a competent authority of a listed activity or specified activity Authorisation in terms of National Environmental Management Act. Environmental A process of evaluating the environmental and socio-economic consequences of Impact a proposed course of action or project Assessment Environmental Requirements or specifications for environmental management, as presented in Management theEnvironmental Management Plan, some of which are based on the mitigation Measures measures identified in the EIA Report (in this case the EIA). Environmental A description of the means for achieving environmental objectives and targets Management during all stages of a specific proposed activity. Programme Formation: A body of rock identified by lithic characteristics and stratigraphic position. Different formations have different geohydrological properties. Fracture: Any break in a rock including cracks, joints and faults. Fractures can form the main conduits for groundwater flow. They can also form pathways for the movement of contamination. Fractured-rock An aquifer in which groundwater moves through secondary openings and

A formation, group of formations, or part of a formation that contains sufficient

Fractured-rockAn aquifer in which groundwater moves through secondary openings and
interstices, which developed after the rocks were formed. Approximately 90% of
aquifers in South Africa are secondary in nature.

Groundwater:	Water found in the subsurface in the saturated zone below the water table. Groundwater is a source of water and is an integral part of the hydrological system.
Hydrogeology:	In South Africa, the term geohydrology and hydrogeology are used interchangeably. In theory hydrogeology is the study of geology from the perspective of its role and influence in hydrology, while geohydrology is the study of hydrology from the perspective of the influence on geology.
Impact	A change to the existing environment, either adverse or beneficial, that is directly or indirectly due to the development of the project and its associated activities.
Method Statement	A mandatory written submission by the contractor to the ECO setting out the plant, materials, labour and method the contractor proposes using to carry out an activity.
Mitigation Measures	Actions identified to manage (avoid, minimise or optimise) potential environmental impacts which may result from the development.
Phase	A defined period during the life of the project, e.g. the construction and operations phases.
Operational Phase	The stage of the works following the Construction Phase, during which the development will function or be used as anticipated in the Environmental Authorisation.
Product Water	Water from the desalination process which has undergone final treatment to meet the required water quality standards for the end use.
Quaternary:	The Quaternary Period is a geologic time period that includes the most recent 2.6 million years, including the present day.
Storativity:	The volume of water released from storage per unit of aquifer storage area per unit change in head.
Transmissivity:	Transmissivity is the rate at which water is transmitted through a unit width of an aquifer under a unit hydraulic gradient. It is expressed as the product of the average hydraulic conductivity and thickness of the saturated portion of an aquifer.

February 2020

1 Introduction and Scope

1.1 Appointment

SRK Consulting (South Africa) (Pty) Ltd (SRK) was appointed by SJR Boerdery CC (SJR Boerdery) to conduct the Water Use Licence Application (WULA) process for additional groundwater abstraction for irrigation, livestock watering and domestic purposes. A WUL is required from the Department of Water and Sanitation (DWS) for an activity (water use) listed and triggered in terms of Section 21 (a) of the National Water Act 36 of 1998 (NWA) - *taking water from a resource*. In addition, SRK was also appointed to compile a technical report in support of a WULA.

1.2 Background

SJR Boerdery owns the Kamiebees Farm 368 Portion 1 (368/1), which is located *c*.85 km south east of Springbok, Northern Cape. The farm currently uses borehole water for irrigation, livestock watering and domestic purposes, sourced from three boreholes equipped with windpumps. SJR Boerdery (owner – Mr Johnnie van Niekerk) intends to supplement his livestock feed (for 300 sheep, 80 springboks and 20 Oryx) with Prickly Pear plants (*Upuntia Ficus Indica*), as the plant is cost-effective, uses minimal water and is a good source of protein. SJR Boerdery proposes to extend the prickly pear plot by 10 hectares (ha) (20 ha in total) by 2026 to harvest *c*.15 tons per annum. Water requirements are comparatively low (a prickly pear requires approximately three litres per week) equating to *c*.18 700 kilolitres per annum (KL/a). This requires a WULA for additional groundwater abstraction from existing boreholes based on the recommended sustainable yields.

1.3 Structure of this Report

This report provides the motivation for applying for a WULA, discusses the hydrogeology of the site and surroundings, presents the results of the aquifer yield testing, recommends sustainable yields and evaluates potential impacts of potential groundwater abstraction. The report also provides key recommendations associated with groundwater management/potential abstraction for the Kamiebees Farm 368/1 based on the hydrogeological assessment.

The report is structured in the following sections:

Section 1: Introduction and Scope

Provides an introduction and background of the proposed project and outlines the purpose of this document applicable to the hydrogeological study. In addition, it describes the scope of work proposed to the client to conduct the hydrogeological investigation and impact assessment.

Section 2: Geographical Settings

Provides a brief description of the site locality, climate, topography and drainage.

Section 3: Scope of Work

Describes a narrative description of a project's work requirements.

Section 4: Methodology for the Hydrogeological Assessment

Describes the methodologies employed and information used to conduct the hydrogeological investigation and impact assessment.

Section 4: Prevailing Groundwater Conditions

Describes the prevailing groundwater conditions and geology at the site that informed the impact assessment.

Section 6: Aquifer Characterisation

Describes the classification, vulnerability and protection classification of the site aquifers.

Section 7: Groundwater Modelling

Not included in the project scope.

Section 8: Assessment of Potential Geohydrological Impacts

Describes and assesses the significance of potential hydrogeological impacts according the SRK's methodology.

Section 9: Groundwater Monitoring System

Describes the groundwater monitoring system required to effectively monitor potential impacts.

Section 10: Groundwater Environmental Management Programme

Describes the groundwater management procedures required to mitigate potential impacts of groundwater contamination associated with the proposed site activities.

Section 11: Post-closure Management Plan

Describes the post-closure management strategies to remediate environmental impacts and water resources.

Section 12: Conclusions and Recommendations

Provides a summary of the hydrogeological assessment results, describes the significance of the impact during operation, proposed recommendations and outlines essential mitigation measures to implement if authorisation for a WUL is granted.

This report adheres to the contents for minimum information requirements to be submitted for water use technical geohydrology reports as set out in the DWS *Regulations Regarding the Procedural Requirements for Water Use Licence Applications and Appeals* (DWS, 2017).

2 Geographical Setting

2.1 Site Locality

The Kami bees Farm 368/1 is located *c*.85 km southeast of Springbok and *c*.14 km north of Vaalputs in the Northern Cape at Latitude S 30.030852° and Longitude E 18.519925° . The farm is *c*.3 000 ha in extent and about the R355 Regional Route (see Figure 2-2).

2.2 Topography and Drainage

Kamiebees Farm 368/1 lies within the F30A quaternary catchment, which covers an area of *c*.165 320 ha (DWAF, 2005).

Regionally, the higher lying topographic regions are to the west of the catchment and slope (averaged at 0.9%) in a north-east direction. The highest elevation in the catchment is c.1 200 metres above mean sea level (mamsl) in the west and the lowest elevation is c.640 mamsl in the north.

Locally, the higher lying topographic regions are to the east of the Kamiebees Farm and slope in a north-west direction (Figure 2-3). The highest elevation on the farm is *c*.1 050 mamsl and the lowest elevation is *c*.920 mamsl. The average elevation is *c*.970 mamsl. Stormwater runoff at the farm drains towards the Gasabrivier located to the north-west of the farm boundary. Regionally, surface and groundwater flows towards the Atlantic Ocean via the Buffelsrivier (DWS, 2016).

The groundwater flow direction is inferred from spot water levels which range from 916 - 966 mamsl over the study area and 10 - 13 meters below ground level (mbgl) on the Kamiebees Farm. The inferred groundwater flow mimics the topography and flows in a westward direction towards the Gasabrivier (Figure 5-3).

2.3 Climate

The study area has a Mediterranean climate with cool wet winters (May to September) and hot dry summers (October to April). The quaternary catchment's (F30A) average rainfall is 162 mm/a (DWAF, 2005). Most of the rainfall occurs within the winter months where maximum rainfall is recorded in June (37 mm) and minimum rainfall is recorded in January (0 mm) (Weather and Climate, 2019).

Inferred temperatures and evaporation rates were taken from the Springbok and O'Kiep weather stations, as these were the closest weather stations for which data could be obtained. The Springbok weather station shows that the average daily temperatures range from 16.0°C in July to 28.3°C in February. The region is coldest during July reaching a low of 3.8°C on average during the night and is the highest in January and February with an average daily temperature of 28°C. Evaporation follows the same trends, with the lowest evaporation rate of 144.3 mm/month occurring in July and the highest (403.6 mm/ month) occurring in January.

The long-term monthly distribution of average monthly rainfall, temperatures and evaporation rate are displayed in

Table 2-1 and Figure 2-1.

Indicator	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Rainfall (mm)	2.6	7.1	10.1	15.34	25.1	37.9	27.9	31.4	15.1	12.9	7.7	6.2
Temperature (°C)	28	28	27	24	20	17	16	18	20	23	25	27
Evaporation (mm)	403.6	326.6	305.6	221.0	172.7	152.0	144.3	176.6	227.4	305.9	364	393.4

Table 2-1: Summary of mean monthly climate indicators

Note: Source - Rainfall Data: Springbok Weather Station 0214670 (Midgley et al., 1994)

- Evaporation Data: O'kiep Weather Station 0214636 (Midgley et al., 1994)

- Rainfall Data: Springbok Weather Station 0214670 (Midgley et al., 1994)

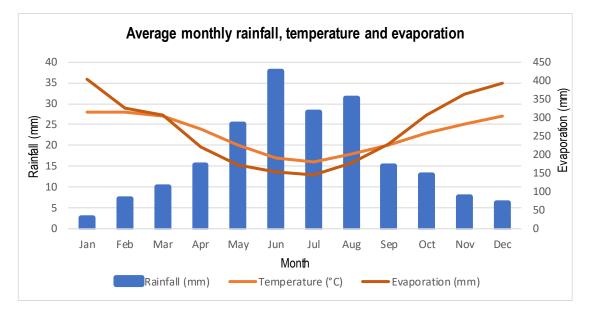


Figure 2-1: Average monthly rainfall, temperature and evaporation

SRK Consulting: Project No: 552583/1

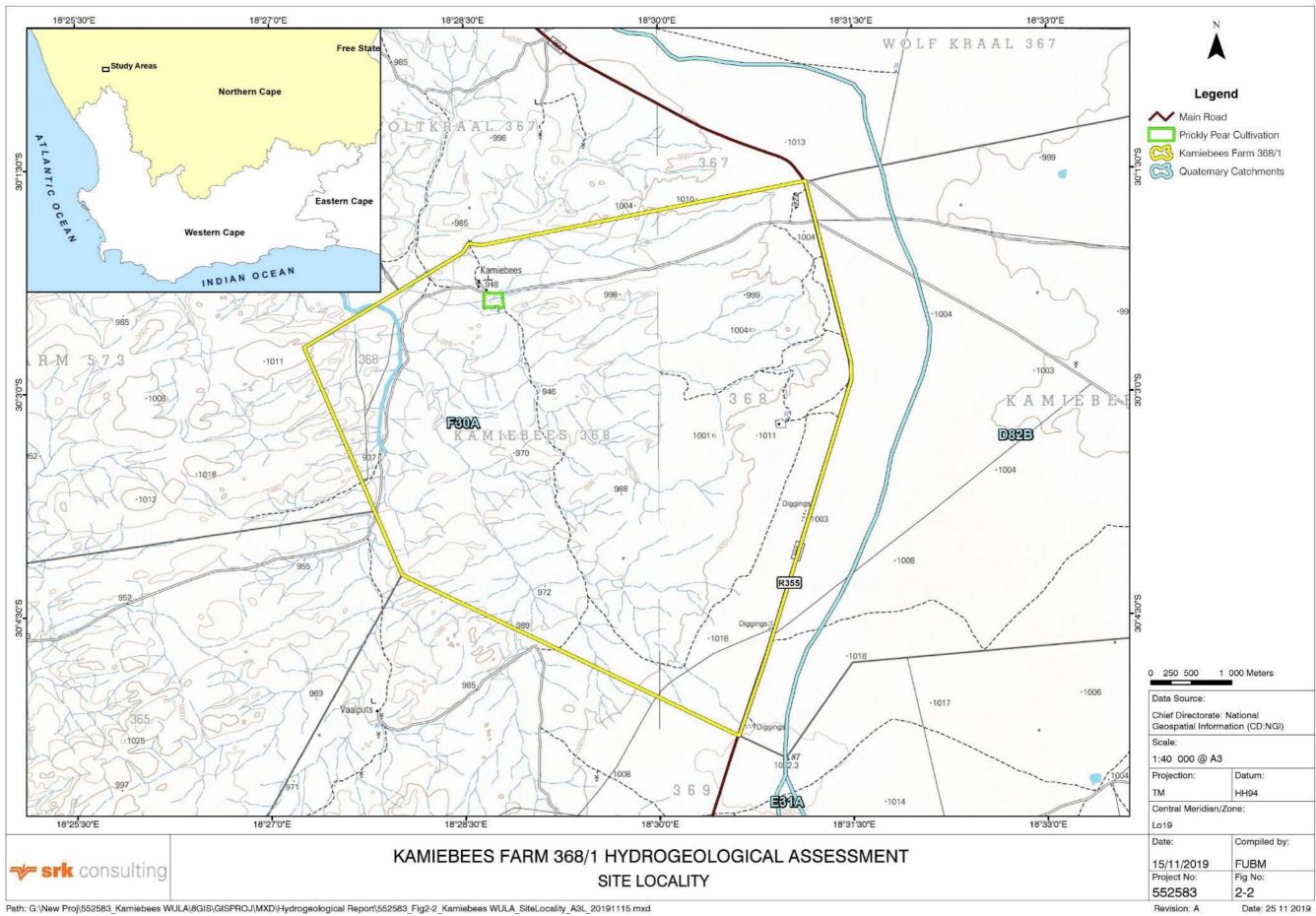
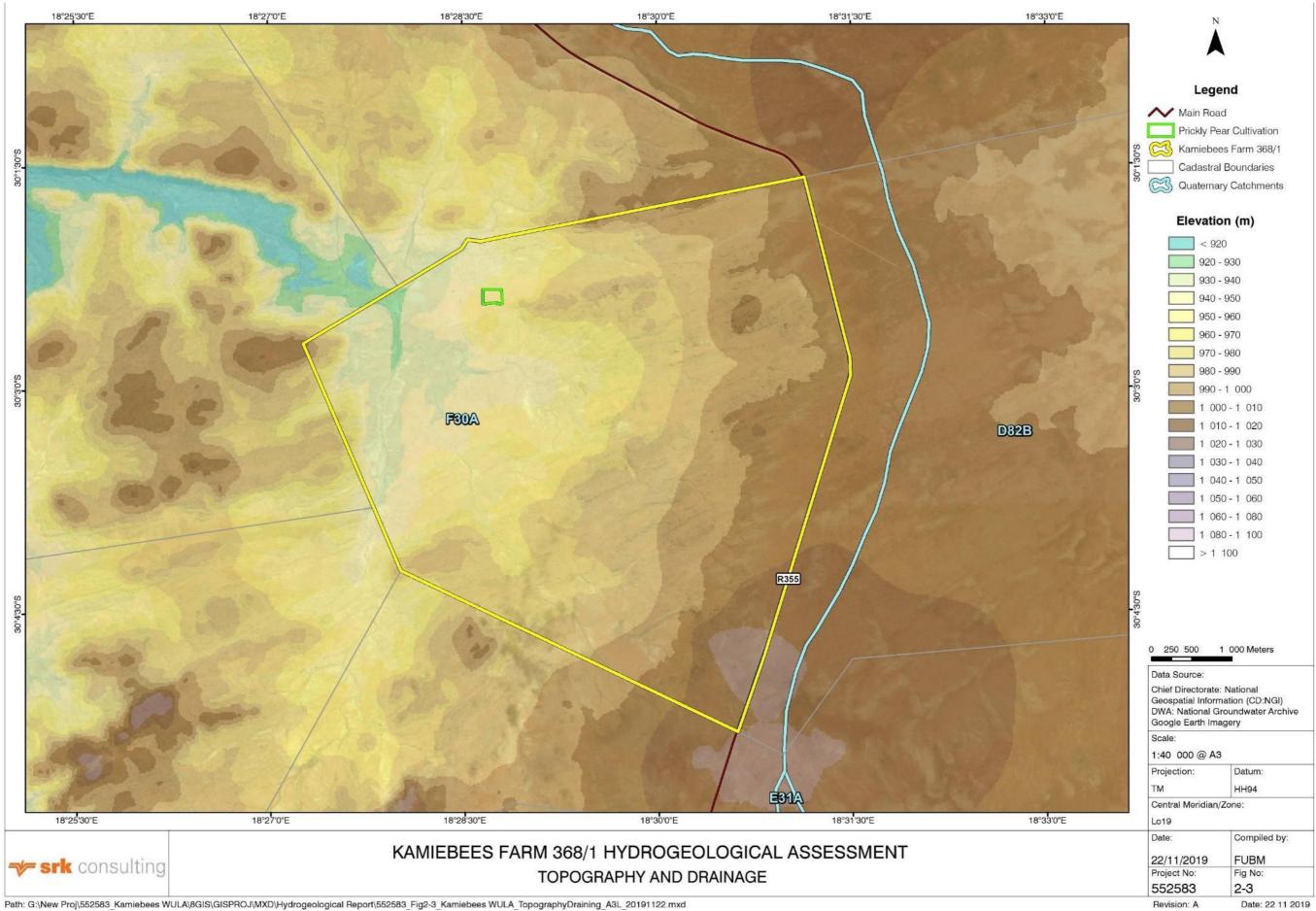



Figure 2-2: Site locality

SRK Consulting: Project No: 552583/1

3 Scope of Work

The scope of work for this investigation included the following:

- Collect data, including latest data from the DWS National Groundwater Archive (NGA), published geological and hydrogeological maps, reports and databases that may be available for the area;
- Visit the site and conduct a hydrocensus of boreholes on the client's property, as well as boreholes on neighbouring properties;
- Analyse the pumping test data and water quality analysis results, and determine the sustainable and optimum pumping rate for each borehole;
- Assess the potential impact of abstraction on the aquifer and other water users;
- Compile a hydrogeological impact report for inclusion with the WULA; and
- Conduct a WULA process as specified in Government Notice 267 of 24 March 2017 published in terms of the National Water Act 36 of 1998 (NWA), including:
 - A pre-application meeting with the Department of Water and Sanitation (DWS) in Upington;
 - Submit the prerequisite application form;
 - o Conduct a site inspection with the DWS case officer;
 - Compile the WULA, including NWA Section 27 Motivation and supplementary application forms;
 - Conduct stakeholder engagement on the WULA, including:
 - Erecting a notice on the property boundary;
 - Notifying neighbouring property owners and occupiers, the municipal councillor, and organs of state; and
 - Placing an advert in one local newspaper;
 - o Compile a stakeholder engagement report, including issues and responses summary; and
 - Submit the WULA on behalf of the client to the DWS.

4 Methodology for the Hydrogeological Assessment

4.1 Desk Study

For the hydrogeological desktop study of the site and neighbouring properties, the following reports and information were collated and assessed:

- The DWS NGA;
- The DWS (2016) Groundwater Ecological Water Requirements Report;
- DWAF's 2005 National Groundwater Resource Assessment Phase 2 database and reports;
- The DWAF's 2002 1:500 000 Geological Map Sheet 3018 Loeriesfontien;
- The DWAF's May 2001 report "An Explanation of the 1:500 000 General Hydrogeological Map Springbok 2916; and
- Rainfall data received from "Surface water resources of South Africa 1990. Water Research Commission Report No 298/3.1/94".

4.2 Hydrocensus

A hydrocensus was conducted on 11 October 2019. The aim of the hydrocensus was to obtain information regarding groundwater levels, groundwater quality (EC, pH and temperature), existing groundwater use, borehole construction, borehole localities, land use and identify potential impact receptors.

A total of 10 boreholes were surveyed within a 4 km radius of the site (Figure 4-1).Four are located on the Kamiebees Farm, five are positioned on the neighbouring Wolfkraal Farm (Owned by Mr Karel Louw) and one on the neighbouring Nama Khoi Municipal land. All borehole measurements and

information gathered during this hydrocensus are summarised in Table 4-1. In addition, borehole descriptions are presented in Table 4-2.

The four boreholes located on Kamiebees Farm 368/1 consisted of three active boreholes (KB-BH1, KB-BH2 and KB-BH3) which pump groundwater to a central reservoir, supplying water to the farmstead, livestock and prickly pear orchard. Water levels are relatively shallow at *c*.10 mbgl Boreholes KB-BH2 and KB-BH3 are within 10 m of each other, whereas borehole KB-BH4 is located near the farmstead and is currently not in use as it is too low-yielding due to the drought. The three active boreholes are equipped with windpumps containing 60 mm Jooste cylinders capable of yielding a maximum of 770 litres per hour (L/h) (Jooste Cylinder & Pump Co, 2019). It is assumed that the wind is of sufficient strength to drive the windpumps approximately 25% of the time, thus the estimated average abstraction rate is *c*.0.053 L/s per borehole, which equates to an average abstraction rate of *c*.1 700 KL/a per borehole.

The five boreholes located on the neighbouring Wolfkraal Farm consist of four active windpump equipped boreholes (WK-BH1, WK-BH2, WK-BH3 and WK-BH4) that supply drinking water to livestock and water for domestic use to the farmstead. Borehole WK-BH5 intermittently pumps water once every two weeks and serves as a supplementary borehole for the farmstead (pers. comm, Mr Karel Louw). Abstraction rates for Wolfkraal are inferred as c.0.053 L/s per borehole. Water level measurements were unobtainable from the Wolfkraal Farm as no access could be gained through the windpump baseplates. Therefore, all water level and borehole depth data were attained from Mr Karel Louw who stated that water levels are average c.50 mbgl.

The borehole (NK-BH1) located on the neighbouring Nama Khoi Municipal land was naturally destroyed and thus abandoned.

Water quality measurements taken on-site include pH, EC and temperature. The groundwater at five boreholes (KB-BH2, KB-BH3, KB-BH4, WK-BH2 and WK BH3) meet drinking water standards (<270 mS/m), whereas boreholes KB-BH1, NK-BH1, WK-BH1, WK-BH4 and WK-BH5 display high EC values indicative of brackish water (Table 4-1). Although, some of the boreholes are classified as having a brackish water type, it is still suitable for its intended agricultural use.

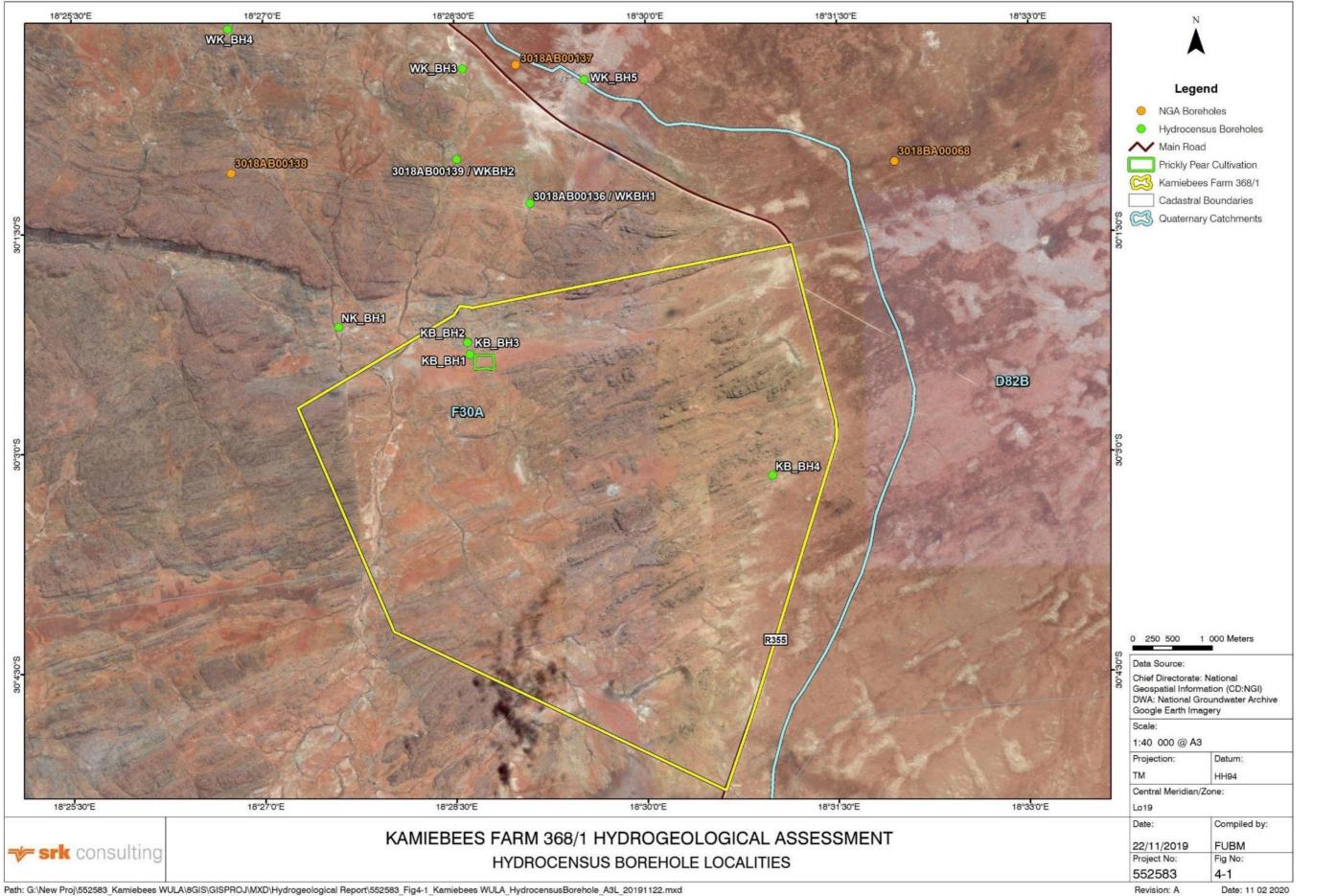


Figure 4-1: Hydrocensus borehole localities

Table 4-1:Hydrocensus summary

Borehole ID	Farm Name	Latitude S	Longitude E	Owner	BH Depth (mbgl)	Casing Type/ Diameter (mm)	Water Level (mbgl)	Collar Height (magl)	Elevation (mamsl)	Yield (I/s)	EC (mS/m)	рН	Temp °C
KB-BH1		-30.03883	18.47695		54.30	170	12.75	0.33	947	0.05	316	8.57	25.4
KB-BH2	Kamiahaaa	-30.03740	18.47665	Mr Johnnie Van Niekerk	30.20	170	10.82	0.26	945	0.05	266	8.22	26.4
KB-BH3	- Kamiebees	-30.03748	18.47665		17.25	170	10.45	0.28	945	0.05	262	8.32	25.6
KB_BH4		-30.05273	18.516459		+100	150	37.69	0.05	949	N/A	222	8.09	25.7
NK-BH1	Municipal Land	-30.03565	18.459786	Nama Khoi Municipality	55	125	8.53	0.2	879	N/A	655	8.23	22.4
WK-BH1		-30.02167	18.484865		c.114	150	c.18	0.2	936	0.05	525	7.76	26.9
WK-BH2		-30.01661	18.475348		c.72	150	c.50	0.2	934	0.05	259	8.29	26.6
WK-BH3	Wolfkraal	-30.00634	18.476138	Mr Karel Louw	c.30	150	c.30	0.2	964	0.05	249	8.30	25.5
WK-BH4		-30.00172	18.445488	Louw	c.60	150	c.30	0.2	952	0.05	397	7.95	21.4
WK-BH5		-30.00761	18.492038		100	150	86	0.25	972	0.05	301	8.30	28.5

 Table 4-2:
 Hydrocensus borehole descriptions

Borehole ID	Description
KB-BH1	Working windpump with 60mm Jooste cylinder. Pumped to central reservoir used for prickly pear, livestock watering and domestic water supply at homestead.
KB-BH2	Working windpump with 60mm Jooste cylinder. Pumped to central reservoir used for prickly pear, livestock watering and domestic water supply at homestead
KB-BH3	Working windpump with 60mm Jooste cylinder. Pumped to central reservoir used for prickly pear, livestock watering and domestic water supply at homestead
KB-BH4	Near farm homestead and previously used for domestic water supply. Currently too low yielding to be used due to the drought.
NK-BH1	Old disused borehole with windpump of which the pipes and rods have been removed.
WK-BH1	Working windpump Used for livestock (sheep).
WK-BH2	Working windpump. Used for livestock (sheep).
WK-BH3	Working windpump. Supplies water to the farm's homestead
WK-BH4	Working windpump. Used for livestock (sheep).
WK-BH5	Used as a back-up water supply to the homestead. Equipped with electric submersible pump used once every two weeks.

Figure 4-2: Hydrocensus pictures

4.3 Geophysical Survey and Results

Geophysical surveys were not required as the client plans on abstracting groundwater from existing boreholes.

4.4 Siting and Drilling of Boreholes

Drilling of a borehole was not required by the client as they plan to use existing boreholes.

4.5 Aquifer Yield Testing

The three boreholes proposed for licensed abstraction at Kamiebees Farm, KB-BH1, -BH2 and -BH3 (see Figure 4-1 for locality and Figure 4-3 for photographs, were yield tested by AB Pumps from the 13 to 24 September 2019. Yield testing was carried out in accordance with SANS 10299 by employing a positive displacement screw-type pump connected to a diesel engine with gearbox. Discharge was 50 m downstream of each borehole and away from the norhwest - southeast striking fault zone on which these boreholes have been drilled.

Summaries of the yield test results are given in Table 4-3 (step tests) and Table 4-4 (CDTs). The test pumping data sheets received from AB Pumps, together with existing pump details and graphs illustrating water level behaviour during testing, are included in Appendix A.

Calibration tests were conducted on all three boreholes to stress the borehole and determine suitable step test rates. Step tests were conducted on all three boreholes (KB_BH1, KB_BH2 and KB_BH3) using five by 60 min discharge steps with each consecutive step conducted at a higher discharge rate. Constant Discharge Tests (CDT) were conducted for a period of 48 hours, to gain an understanding of the "sustainable yield of each borehole. As one borehole underwent yield testing, the water level at the other two boreholes was monitored to determine the effects of mutual interference during abstraction.

KB-BH1 underwent a calibration test with discharge steps ranging from 1.5 to 5 L/s. The steps tests were conducted at 1, 2, 3.5 and 5 L/s. The drawdown at the end of the last step was 38.62 m. The EC values were constantly below 391 mS/m for the duration of the step tests (). After water level recovery, borehole KB-BH1 was pumped for 48 h at a constant discharge rate of 3 L/s. The borehole reached a final drawdown of *c*.21.56 m by the end of the 48 h CDT (Table 4-4) and took a period of 48 h to recover to a drawdown of 2.21 m (90% recovery).

KB-BH2 underwent five steps during the step test that started at 0.5 L/s and increased by 0.5 L/s every hour to a final discharge of 2.5 L/s. The drawdown at the end of the last step was 3.34 m. EC values were constantly below 270 mS/m for the duration of the step discharge test (Appendix A). After water level recovery, the borehole was pumped for 48 h at a constant discharge rate of 1 L/s. The borehole experienced a maximum drawdown of *c*.2.73 m by the end of the 48 h CDT (Table 4-4) and took a period of 48 h to recover to *c*.0.31 m (89% recovery). It is notable that the observation borehole KB-BH3 *c*.10 m away, responded in the same manner as the tested borehole, suggesting that these two boreholes are directly linked and abstract water from the same fractured-rock fault zone and aquifer. This is expected as these boreholes are in close proximity (*c*.10 m apart), therefore, a calibration and step test were deemed sufficient to understand the hydrogeological response of KB-BH3.

Borehole KB-BH3 underwent a calibration test with discharge steps ranging from 0.7 to 5.6 L/s. Thereafter, step tests were conducted at 1, 2, 4 and 5.7 L/s. The maximum drawdown at the end of the last step was 6.11 m. EC values were constantly below 342 mS/m for the duration of the step test (Table 4-3). After a period of 2 h the water level recovered to 11.40 mbgl from an initial rest water level of 10.82 mbgl, which equates to a drawdown deficit of 0.58 m (91% recovery).

Borehole No.	Borehole Depth	Pre-Pumping Water Level		60 min S	tep Disch L/s	arge Rates		Max. Drawdown at Last Step
	mbgl	mbgl	Step 1	Step 2	Step 3	Step 4	Step 5	m
KB_BH1	54.30	13.12	1	2	3.5	5		38.62
KB_BH2	17.25	10.45	0.4	0.8	1.5	2	2.5	3.34
KB_BH3	30.20	10.82	1	2	4	5.7		6.11

Table 4-4: Summary of constant discharge yield tests

Borehole No.	Borehole Depth	Pre-Pumping Water Level	48 hr Constant Discharge Test	
	mbgl	mbgl	Pump Rate L/s	Final Drawdown m
KB_BH1	54.30	13.22	3	21.56
KB_BH2	17.52	10.57	1	2.73

To estimate the maximum long-term pumping rate, pumping schedule, pumping depth, management measures and aquifer parameters, the test pumping data were analysed using an Excel based software package developed by Van Tonder *et al* (2002). In the software package, various methods such as the Flow Characteristic method (FC-method), porous aquifer solutions (Theis, Cooper-Jacob and Hantush methods), fractional pumping test analysis (Barkers Generalised Radial Flow Model) and Step drawdown analysis were used to estimate risk-based sustainable yields for the boreholes as well as aquifer parameters such as transmissivity (T) and the storage coefficient (S). In the FC-Analysis the following aquifer input parameters were used:

- Effective recharge of 0.16 mm/a (GRA-2 data for F30A, DWAF, 2005); and
- Based on a Drought Index of 3.4 years (GRA-2 data for F30A, DWAF, 2005), the data were conservatively extrapolated for eight years.

Safe yields are defined as the amount of water that can be withdrawn from an aquifer without producing an undesired effect (Todd, 1959). It is important to monitor groundwater levels over a prolong period to determine whether the 'safe' yield is still sustainable. The safe yields of the Kamiebees boreholes were calculated using the aquifer transmissivity, storativity as well concurrent borehole abstractions. For example, the safe yield calculations of KB-BH1 accounts for the simultaneous abstraction of boreholes KB-BH2 and KB-BH3. A summary of the analyses results with recommended safe yields are presented in Table 4-5.

The safe yields for the following boreholes are:

- KB-BH1: 0.40 L/s
- KB-BH2: 0.20 L/s
- KB-BH3: 0.30 L/s

This equates to a total of 77.8 kilolitres per day or 28 382 KL per annum (Table 4-8). Comparing these yields to the groundwater availability in the quaternary catchment, it is apparent that the yield amounts to:

- Approximately >1 % of the groundwater potentially stored in the aquifers of the catchment;
- Approximately.4.7 % of the Mean Annual Groundwater Recharge; and
- Approximately.6.3 % of the Utilisable Groundwater Exploitation Potential

Borehole No.	Borehole depth	Rest Water Level	Pump Intake	Available Drawdown	Pump Sensor Depth*	Maximu	ım Yield	Maximum Abstraction Limit		Limit
	mbgl	mbc	mbgl	m	mbc	L/s	KL/h	KL/d	KL/m	KL/a
KB-BH1	54.3	12.41	50.0	47.0	45.0	0.40	1.440	34.6	1 051	12 614
KB-BH2	17.3	10.16	15.0	4.5	13.5	0.20	0.720	17.3	526	6 307
KB-BH3	30.2	10.56	27.0	16.0	25.0	0.30	1.080	25.9	788	9 461
Total						0.90	3.240	77.8	2 365	28 382

 Table 4-5:
 Summary of recommended safe borehole yields

Note: Source – Aquifer test (AB Pumps, 2019)

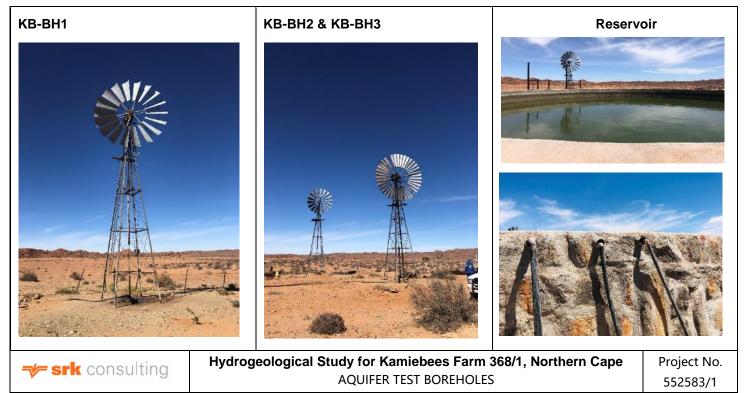


Figure 4-3: Images of aquifer test boreholes

4.6 Groundwater Monitoring, Sampling and Chemical Analysis

Water samples were collected for the three boreholes that underwent yield testing (KB-BH1, KB-BH2 and KB-BH3). Water quality analyses of the samples collected are summarised and compared to the *South African National Standard for Drinking Water (SANS 241:2015)* in Table 4-6.

Chemical and microbial concentration values exceeding the SANS 241:2015 acute and chronic health¹ risk related drinking limit are shown in bold red and those exceeding aesthetic² and operational³ limits in bold. Values indicated with <-symbol are below the laboratory's method detection limits. The laboratory reports are included in Appendix C.

The water quality of boreholes KB-BH2 and KB-BH3 is similar in chemistry (little variation) which is expected as they are only 10 m apart. Borehole KB-BH1 displays slightly higher concentrations with poorer water quality. All boreholes exceed the SANS 241-2015 human health risk drinking limits for fluoride and sulfate concentrations. In addition, water at borehole KB-BH1 displayed above human health risk limits for nitrate and nitrite concentrations whilst at KB-BH2 and KB-BH3 manganese at both and iron at the latter, also exceed health related limits. From an aesthetic and operational risks, EC, TDS, chloride and sodium exceeds the limits

To render the water from these three boreholes fit for human drinking, it will have to be treated to reduce the exceedances to acceptable levels. Commonly used treatment options to reduce iron and manganese include oxidation (aeration, chlorination or ozonation), coagulation followed by settlement and filtration. To reduce sulphate, fluoride, sodium, chloride, TDS and EC (salinity) levels, the only treatment options desalination. pH balancing (stabilisation) might also be required⁴ as will disinfection.

The pH values for all the boreholes visited during the hydrocensus range between 7.76 to 8.57 (Table 4-1). Therefore, the groundwater in the study area is neutral to alkaline in nature.

Borehole KB-BH1 has a positive Langelier Index, which is indicative of a scaling tendency (Table 4-7), whereas boreholes KB-BH2 and KB-BH3 have negative Langelier Indices, which is indicative of a corrosive tendency. All boreholes display Ryznar Indices above >6.5 suggesting a corrosive tendency (Table 4-7). In addition, the Larson-Skold Indices are all well above >1.2 (Table 4-7) implying a high-corrosive tendency to metal (mild steel) fittings.

¹ Acute human health risk - Determinand that poses an immediate unacceptable human health risk if ingested if present at concentration values exceeding the numerical limits specified in the SANS 241-2015.

Chronic human health risk - Determinant that poses an unacceptable human health risk if ingested over an extended period if present at concentration values exceeding the numerical limits specified in the SANS 241-2015.

² Aesthetic risk - Determinand that taints water with respect to taste, odour or colour and that does not pose an unacceptable human health risk if present at concentration values exceeding the numerical limits specified in the SANS 241-2015.

³ Operational risk - Determinand that is essential for assessing the efficient operation of treatment systems and risks to infrastructure. ⁴ Dissolved Iron and other trace-metal analysis were done on a filtered (0.45 micron) and preserved (1% Ultrapure nitric acid) sample.

Iron and manganese concentrations may vary over time and the form of iron and manganese may be affected by chlorination. Pilot testing will increase the chance that any iron problems are detected before long term use of the water.

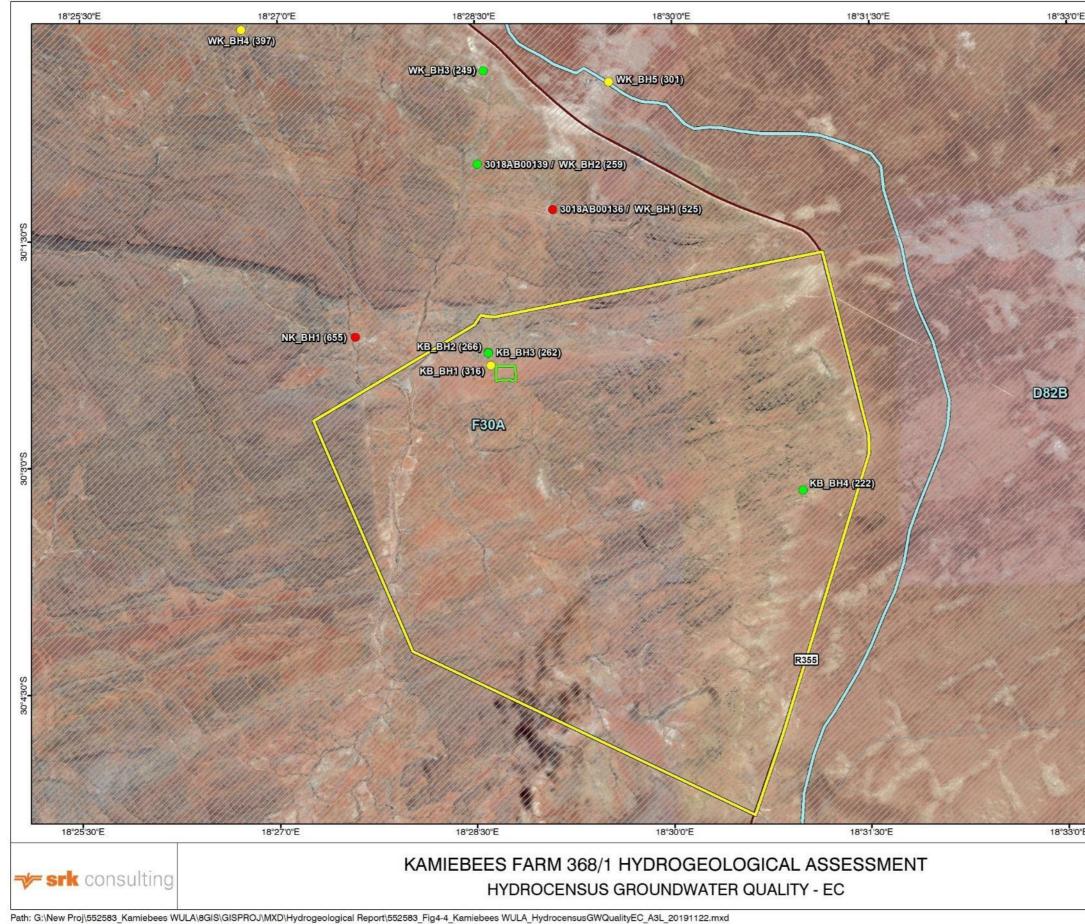
Determinand	Units	KB-BH1	KB-BH2	KB-BH3	"SANS 241-1:2015 RECOMMENDED LIMITS & RISKS"
Ammonia	mg N/L	0.18	0.23	0.26	Aesthetic: ≤1.5
Chloride	mg Cl/L	831	585	628	Aesthetic: ≤ 300
Colour*	mg Pt-Co/L	<1	<1	<1	Aesthetic: ≤15
Dissolved Aluminium	µg Al/L	2.55	2.84	2.60	Operational: ≤300
Dissolved Antimony	µg Sb/L	0.43	0.45	0.39	Chronic Health: ≤20
Dissolved Arsenic	µg As/L	0.44	0.68	0.12	Chronic Health: ≤10
Dissolved Barium	µg Ba/L	35	64	67	Chronic Health: ≤700
Dissolved Boron	µg B/L	714	500	519	Chronic Health: ≤2 400
Dissolved Cadmium	µg Cd/L	0.02	0.06	0.04	Chronic Health: ≤3
Dissolved Calcium	mg Ca/L	235	128	134	Not specified
Total Chromium	µg Cr/L	41.00	39.00	41.00	Chronic Health: ≤50
Dissolved Copper	µg Cu/L	0.98	1.07	1.06	Chronic Health: ≤2 000
Dissolved Iron	µg Fe/L	9.46	7.16	4.98	"Chronic Health: ≤2 000
Dissolved Lead	µg Pb/L	0.04	0.07	0.04	Chronic Health: ≤10
Dissolved Magnesium	mg Mg/L	102	65	66	Not specified
Dissolved Manganese	µg Mn/L	4.39	516.00	830.00	"Chronic Health: ≤ 400 Aesthetic: ≤100
Dissolved Mercury	µg Hg/L	0.94	0.10	0.09	Chronic Health: ≤6
Dissolved Nickel	µg Ni/L	1.21	0.72	0.58	Chronic Health: ≤70
Dissolved Selenium	µg Se/L	5.28	1.67	1.55	Chronic Health: ≤40
Dissolved Uranium	µg U/L	8.53	10.90	10.90	Chronic Health: ≤30
Dissolved Zinc	µg Zn/L	7.38	23.00	17.80	Aesthetic: ≤5 000
Electrical Conductivity at 25°C	mS/m	364	302	302	Aesthetic: ≤170
Fluoride	mg F/L	2.68	3.63	3.56	Chronic Health: ≤1.5
Nitrate	mg N/L	15.80	2.83	3.38	Acute Health: ≤11
Nitrite	mg N/L	<0.01	0.03	0.08	Acute Health: ≤0.9
Combined Nitrate + Nitrite (sum of Ratios)*		1.40	0.29	0.40	Acute Health: ≤1
pH at 25°C	pH units	7.40	7.40	7.40	Operational: ≥5.0 ≤9.7
Potassium	mg K/L	11.00	7.92	7.92	Not specified
Sodium	mg Na/L	504	498	498	Aesthetic: ≤200
Sulphate	mg SO₄/L	599	566	561	Aesthetic: ≤250 "Acute Health: ≤ 500
Total Alkalinity	mg CaCO ₃ /L	251	288	287	Not specified
Total Dissolved Solids at 180°C	mg/L	2 428	1 916	1 910	Aesthetic: ≤1 200
Total Iron	µg Fe/L	422	243	5 001	Aesthetic: ≤300 "Chronic Health: ≤2 000
Dissolved Manganese	µg Mn/L	4.39	516.00	830.00	Aesthetic: ≤100 "Chronic Health: ≤400
Turbidity	NTU	1.20	0.80	47.00	"Operational: ≤1 Aesthetic: ≤5"
E.coli	counts/100mL	0	0	0	Acute Health: 0

 Table 4-6:
 Summary of groundwater quality indicators of the tested water boreholes at Kamiebees

Determinand	Units	KB-BH1	KB-BH2	KB-BH3	"SANS 241-1:2015 RECOMMENDED LIMITS & RISKS"
Faecal Coliforms	counts/100mL	0	0	0	Acute Health: 0
Total Coliforms	counts/100mL	0	0	3	Operational: ≤10

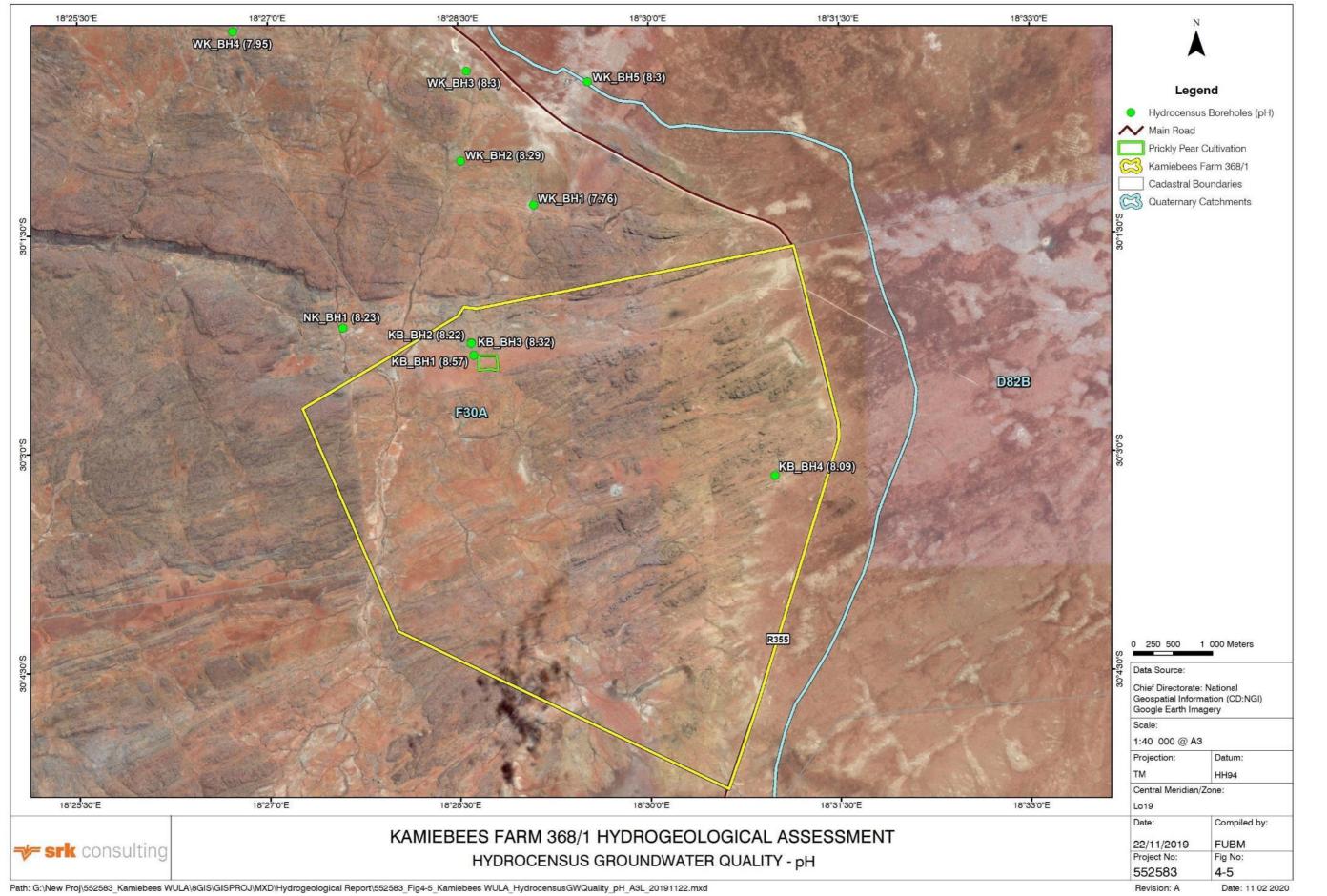
Exceeds health related SANS 241-2015 long-term drinking limits

Exceeds non-health related SANS 241-2015 long-term drinking limits, i.e. aesthetic and operational limits


NS = Not Specified

Values indicated with <-symbol are below the laboratory analytical method's detection limit

ND = Not Determined


Table 4-7: Summary of groundwater corrosivity/scaling indicators of the tested water boreholes at Kamiebees

Index	KB_BH1	KB_BH2	KB_BH3	Tendency
Langelier Index	0.14	-0.05	-0.03	Negative = Corroding tendency Positive = Scaling tendency
Ryznar Index	7.1	7.5	7.5	< 6.5 = Scale-forming tendency > 6.5 = Corrosive tendency
Larson-Skold Index for Mild Steel	3.6	2.5	2.6	< 0.8 = non-corrosive 0.8 - 1.2 = slightly corrosive > 1.2 = highly corrosive - increasing with rates

		Ν	1
			•
		Leg	end
	1	V Main Roa	ad
134711		Prickly P	ear Cultivation
6464///	C	₃ Kamiebe	es Farm 368/1
		Cadastra	Il Boundaries
1 miles	C	式 Quaterna	ary Catchments
1/11/ Co	30°1'30"S	EC (m	IS/m)
10.1111.5	30°1'	0	- 270
11		0 2	70 - 400
19900		• <	400
W.S.	Elec		ductivity (EC)
1 als		(mS	
1 Stalle			mS/m
1. days			00 mS/m
1. 1115			1 000 mS/m
1000- 4		> 1 0	00 mS/m
Sennie .	ŝ		
	30°3'0"S		
M. Ma	8		
	0	250 500	1 000 Meters
	-	ata Source:	-
	-	ata Source: hief Directorate	e: National
	30°4'30"S	ata Source: hief Directorate eospatial Infor 500 000 Hydro	e: National nation (CD:NGI) geological Map
	S_06'4'00E	ata Source: hief Directorate eospatial Infor 500 000 Hydro	e: National mation (CD:NGI) geological Map of South Africa
	S:06:4:00 S:00:4:00 G 1: 00 G	ata Source: hief Directorate eospatial Infor 500 000 Hydro heet: Republic	e: National mation (CD:NGI) geological Map of South Africa
	□ C G 1:0 G S	ata Source: hief Directorate eospatial Infor 500 000 Hydro heet: Republic oogle Earth Im	e: National mation (CD:NGI) igeological Map of South Africa agery
	S.06.7.06 1: S.G S. 1:	ata Source: hief Directorate eospatial Infor 500 000 Hydro heet: Republic oogle Earth Im cale:	e: National mation (CD:NGI) igeological Map of South Africa agery
	S.06.7.06 1: S.G S. 1:	ata Source: hief Directorate eospatial Infor 500 000 Hydro heet: Republic oogle Earth Im cale: :40 000 @ A rojection:	e: National mation (CD:NGI) geological Map of South Africa agery 3
		ata Source: hief Directorate eospatial Infor 500 000 Hydro heet: Republic oogle Earth Im cale: :40 000 @ A rojection: M entral Meridian	e: National mation (CD:NGI) igeological Map of South Africa agery 3 Datum: HH94
		ata Source: hief Directorate eospatial Infor 500 000 Hydro heet: Republic oogle Earth Im cale: :40 000 @ A rojection: M	2: National mation (CD:NGI) geological Map of South Africa agery 3 Datum: HH94 /Zone:
		ata Source: hief Directorate eospatial Infor 500 000 Hydro heet: Republic oogle Earth Im cale: :40 000 @ A rojection: M entral Meridian o19 ate:	2: National mation (CD:NGI) igeological Map of South Africa agery 3 Datum: HH94 /Zone: Compiled by:
	SI 00:00 C G C G C C G C 11: SI G SI 11: SI SI C C C C C C C C C C C C C C C C C	ata Source: hief Directorate eospatial Infor 500 000 Hydro heet: Republic oogle Earth Im cale: :40 000 @ A rojection: M entral Meridian o19	2: National mation (CD:NGI) geological Map of South Africa agery 3 Datum: HH94 /Zone:

Hydrocensus groundwater quality as pH Figure 4-5:

4.7

4.8 Groundwater Modelling

Groundwater modelling was not deemed necessary due to the low yielding nature of the boreholes under consideration and the low groundwater demand of the applicant.

4.9 Groundwater Availability Assessment

Data (Table 4-8) supporting the Groundwater availability assessment was sourced from:

- The DWAF (2005) GRA-2 dataset; and
- The DWS (2016) Groundwater EWR report.

The site is located in Quaternary Catchment F30A, which is c.43% dependent on groundwater. This catchment receives a relatively low mean annual precipitation of 162 mm/a (DWS, 2016) with a mean groundwater recharge of 1.24 MKL/a, or c.6.4 KL/ha/a (DWAF, 2016), which equates to a mean recharge of c.19 300 KL/a for the 3 012 ha Kamiebees Farm. The Drought Index is low at 3.84 years and groundwater baseflow contribution is zero (DWAF, 2005). The potential groundwater stored in the catchment's aquifers is c.91 872 MKL, or 471 KL/ha. Based on this storage potential, likely storage of the aquifers at the 3 012 ha Kamiebees Farm is c.1 418 650 KL

The catchment does not have any associated ecological water requirements but reserves 0.0026 MKL for Basic Human Needs (BHN) and 0.0026 MKL as a groundwater reserve. The catchment has a reported 0.696 MKL/a allocatable groundwater (DWS, 2016). The catchment's General Authorisation (GA) volume for taking groundwater is listed as 0 KL/hectare/annum (DWS, 2016).

The catchment is predominantly dependent on groundwater. Domestic use and small-scale livestock watering do not require licensing or registration as they are listed as a Schedule 1 authorisation. However, higher volume water use such as prickly pear irrigation, as proposed by the SJR Boerdery requires a WUL. The current groundwater abstraction at the Kamiebees Farm is *c*.5 000 KL/a, sourced from the three boreholes equipped with windpumps. This volume is used to irrigate 10 ha's of Prickly Pear crop, comprising of 3 ha mature crop and 7 ha of crop that will mature within two to three years. The 10 ha of mature crop will consume *c*.9 300 KL/a. The Kamiebees Farm is proposing to expand their Prickly Pear plot by a further 10 ha in about six to eight years', enquiring authorisation to abstract a maximum of 18 800 KL/a from the three boreholes. The recommended maximum safe tested yield for the three Kamiebees Farm boreholes h is 28 382 KL/a, which equates to *c*.2% of the farm's potential aquifer storage. This requested volume is significantly lower than the recommended maximum safe yield (i.e. *c*.10 000 KL/a lower) of the three boreholes.

The groundwater information published for F30A by the DWAF (2005) and the DWS (2016) is summarised in Table 4-8.

The Hydrogeological Map Series of The Republic of South Africa (DWAF, 2002), indicates that the site falls within an area zoned as b2, with the median borehole yield (excluding dry boreholes) of the fractured-rock aquifers listed as 0.1 - 0.5 L/s (Figure 5-3)The catchment is predominantly dependent on groundwater. Domestic use and small-scale livestock watering do not require licensing or registration as it is listed as a Schedule 1 authorisation. However, higher volume water use such as prickly pear irrigation, as proposed by the SJR Boerdery requires a WUL. The recommended maximum safe yield for the three Kamiebees Farm boreholes is quantified as 28 382 KL/a, which

equates to c.2% of the farm's potential aquifer storage. Current combined abstraction at the three boreholes is estimated at $c.5 \, 100 \,$ KL/a. This equates to c.26% of the mean potential recharge to the farm's aquifers, or c.0.36% of the groundwater potentially stored in the farm's aquifers.

The groundwater information published for F30A by the DWAF (2005) and the DWS (2016) is summarised in Table 4-8.

Information Piece	Unit	Amount
Extent	ha	165 320
Potential Aquifer Storage	KL/catchment	91 871 900
	KL/ha	471
Mean Recharge to Groundwater	M KL/a	1.24
	KL/ha/a	2
Drought Index5	Years	3.84
Mean Groundwater River Baseflow Contribution	KL/a	0
Estimated Groundwater Abstraction (2003)	KL /a	241 247
Utilisable Groundwater Exploitation Potential	KL /a	1 068 185
Harvest Potential (Vegter, 1995)	KL /a	10 251 600
Catchment groundwater dependency (DWS, 2016)	%	43.41
Allocable groundwater (DWS, 2016)	M KL /a	0.696
Groundwater reserve (DWS, 2016)	M KL /a	0.0026
Mean Annual Precipitation (MAP)	mm	162

Table 4-8: Summary of groundwater information for Quaternary Catchment F30A

⁵ The Drought Index or Di is used to assess the number of years required to bridge cycles of negligible or no aquifer recharge from rainfall, where groundwater abstracted will almost entirely be removed from aquifer storage.

5 **Prevailing Groundwater Conditions**

5.1 Geology

The quaternary catchment F30A is classified as part of the Namaqualand East Groundwater Resource Unit (GRU). The Namaqualand East is underlain by rocks of the Nama and Vanrhynsdorp Groups, which is characterised as Metamorphic Terrane. The Namaqualand East typically contains Mokolian metasediments and metavolcanics consisting of gneisses, schists, amphibolite, metaquartzite, andesite, quartz porphyry, Intrusive granites, granodiorite, tonalite, mafic and ultramafic's. In addition, tertiary and quaternary fluvial and coastal deposits are often present (Department of Water and Sanitation, 2016).

The Kamiebees Farm is primarily underlain by Lekkerdrink Gneiss of the Little Namaqualand Suite and Grey Migmatitic Biotite Gneiss of the Kamiesberg Group. The southern section of the farm is underlain by Burtons Puts Granite, which form part of the younger Spektakel Suite (Council of Geoscience, 2010). A brief description of the site geology is presented in Table 5-1 and a representation of the geology is displayed in Figure 5-1.

Map Code	Formation/ Intrusive	Group/ Suite	Lithology
Nbur	Burtons Puts Granite	Spektakel Suite	Foliated to strongly foliated, orange-brown weathering, megacrystic granite with minor biotite and garnet.
Mkp	Grey migmatitic biotite gneiss	Kamiesberg Group	Grey-weathering, heterogenous, banded, migmatitic gneisses: includes rocks types such as migmatitic banded grey gneiss, semi- pelitic, calc-silicate and quartz-rich gneisses, mafic bands and granitoid lenses and dykes.
Nlek	Lekkerdrink Gneiss	Little Namaqualand Suite	Red-brown weathering, strongly foliated biotite augen and streaky gneiss with minor garnet, augen consist of aggregates of quartz and K-feldspar surrounded by biotite streaks. In-situ charnockitised gneiss typically brown with hypersthene replacing biotite.

 Table 5-1:
 Stratigraphy and lithology of the area surrounding the site

Note: Source – 1:250 000 Geological Series Sheet 3018 Loeriesfontein.

Several northwest-southeast striking faults have been mapped at the middle and western parts of Kamiebees Farm (Figure 5-1). The three targeted boreholes are all located on a single fault line, which intercepts the grey migmatitic biotite gneiss Formation.

5.2 Acid Generation Capacity

Not applicable to this investigation and proposed development.

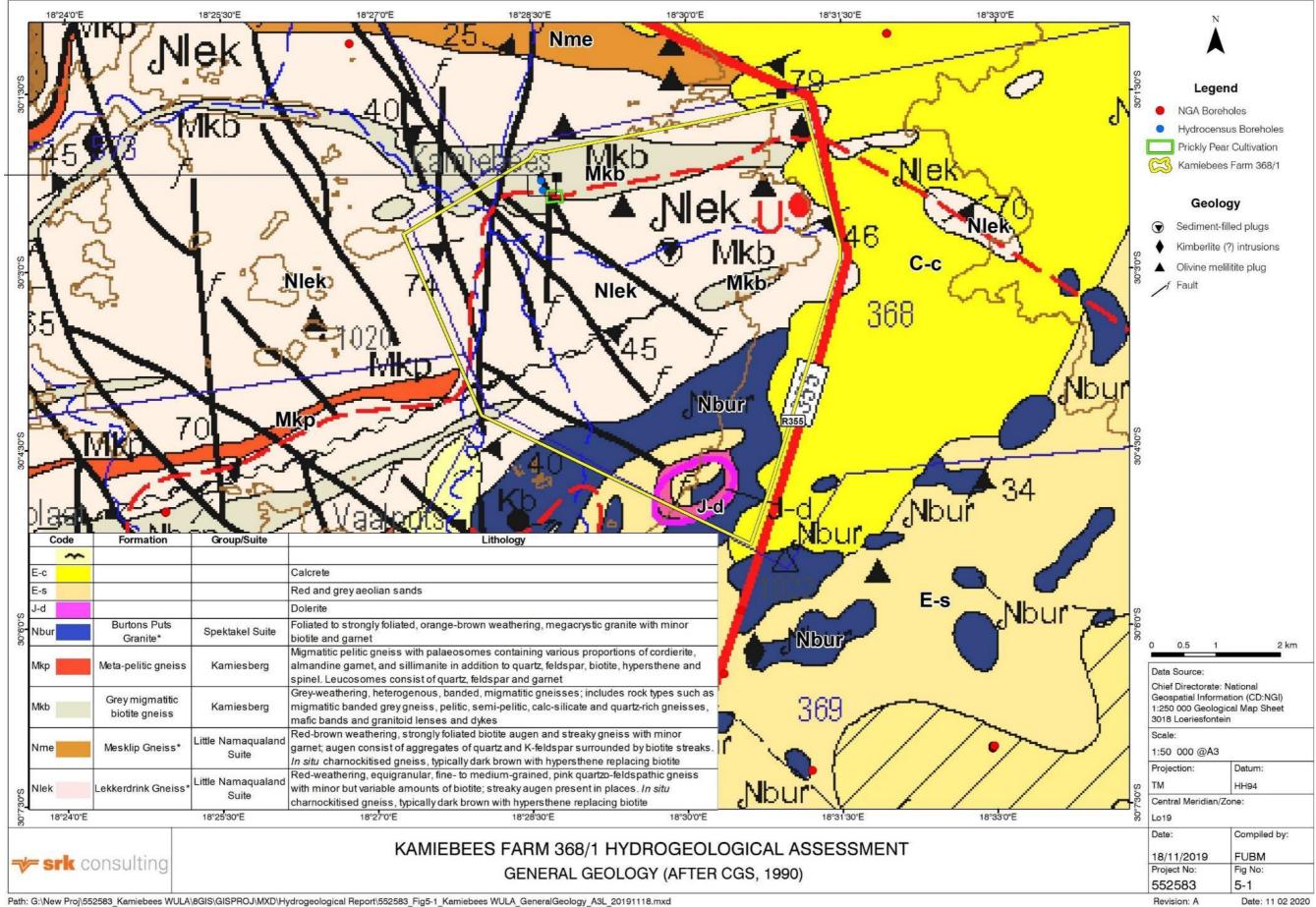


Figure 5-1: General geology

Page 19

5.3 Hydrogeology

5.3.1 Aquifers

Regionally, the Namaqualand East GRU is underlain by rocks of the Nama and Vanrhynsdorp Groups. Typically, the aquifers in this region are fractured and weathered in nature. Locally, the Kamiebees Farm is underlain by gneiss, which forms part of the Little Namaqualand Suite. The gneiss is predominantly poorly fractured, hence its aquifer forming capacity is limited. Therefore, very little, groundwater is found in this fractured-rock aquifer and the main source of groundwater in the area is limited to a few narrow, linear fractures or fault zones. Boreholes drilled away from these fractured zones, or on the up-dip side of them, are normally dry, or very low yielding.

The Kamiebees Farm has numerous faults (Nuwerus lineaments) in the northwestern portion of the site (Figure 5-2). The three existing/ targeted and tested boreholes (KB-BH1, KB-BH2 and KB-BH3) are all located on a single, narrow, north-nortwest striking fault zone. Shallow groundwater levels are present in these boreholes with depths ranging from c.10 - 12 mbgl. To date, low volumes of c.0.053 L/s water were pumped from this fault via the use of wind driven pumps (windpumps). Aquifer testing conducted on these boreholes presents low recommended safe yields ranging between 0.2 and 0.4 L/s (subsection 4.5).

Water boreholes (WK-BH1, WK-BH2, WK-BH3, WK-BH4) used for livestock watering on the neighbouring Wolfkraal Farm, are all located on different and separate linear features to the north of the Kamiebees Farm. There boreholes are up-gradient of the Kamiebees Farm and the majority are relatively shallow in depth (>70 mbgl). These boreholes are separated by solid geological formations from the Kamiebees Farm, which implies that it is unlikely that the pumping from the Kamiebees Farm could have any effect on boreholes and groundwater abstraction at Wolfkraal. It is predicted that the current severe drought experienced in the region would be the main impact driver on declining groundwater levels and boreholes pumping dry. In addition, it is evident that all borehole yields are dependent on mean groundwater recharge, which, together with a drought index of 3.84 years, is a meagre 0.16 mm/a for catchment F30A.

5.3.2 Unsaturated Zone

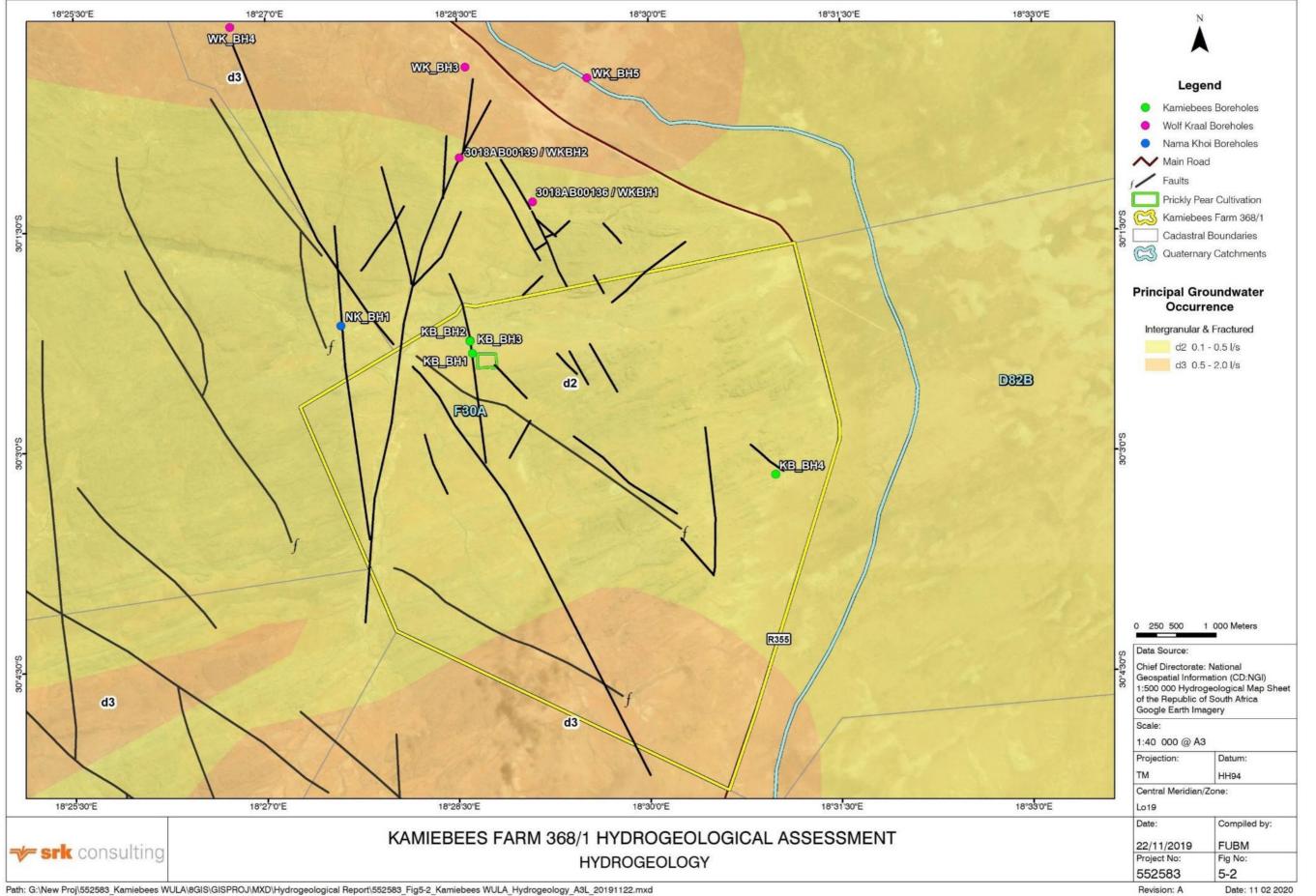
Water levels taken during aquifer testing indicated that groundwater levels range between 10 - 13 mbgl on the Kamiebees Farm, implying that the unsaturated zone is *c*.10 m thick. No additional water level data could be collected from neighbouring farms, as all boreholes are being equipped with windpumps preventing access. However, based on verbal communication with the owner, Mr Karel Louw, who stated that water levels range between 18 - 60 mbgl, implying that the unsaturated zone on the higher lying Wolfkraal Farm ranges between 18 - 60 mbgl.

5.3.3 Saturated Zone

The saturated zone for the Kamiebees Farm ranges between 10 - 54 mbgl, whereas the saturated zone from the Wolfkraal Farm ranges between 18 - 60 mbgl.

5.3.4 Hydraulic Conductivity

The hydraulic conductivity (K) is based on the transmissivity (T) values calculated from analysis of borehole pump test data by dividing T (m^2/d) by the saturation thickness (m), as well as using published values for similar aquifer types. The derived K values are summarised as follows:


- K for fractured granite and gneiss: 43 to 2.2 x 10⁻⁴ m/d (Freeze and Cherry, 1979);
- K for unfractured granite and gneiss: 6.5 x 10⁻⁵ to 8.6 x 10⁻¹⁰ m/d (Freeze and Cherry, 1979);

- K fractured-rock aquifers of F30A: 0.09 m/d (based on DWAF, 2005 GRA-2 data and the average T values from the aquifer tests. Transmissivity polygon for the 17.5 m²/d, i.e. 17.5 m²/d divided by GRA2 aquifer thickness of 188 m);
- K fractured-rock aquifer at KB-BH1: c.0.16 m/d (based on dividing the average pumping test derived T-value of c.6.67 m²/d by the c.41.6 m saturation depth of the borehole, i.e. 6.67÷41.6);
- K fractured-rock aquifer at KB-BH2: c.2.55 m/d (based on dividing the average pumping test derived T-value of c.17.5 m²/d by the c.6.8 m saturation depth of the borehole, i.e. 17.5÷6.8); and
- K fractured-rock aquifer at KB-BH3: *c*.0.97 m/d (based on dividing the average pumping test derived T-value of c.18.8 m²/d by the *c*.19.4 m saturation depth of the borehole, i.e. 18.8÷19.4).

Aquifer parameters, derived from yield testing at boreholes KB-BH1, KB-BH2 and KB-BH3 indicate T values between 6.67 and 18.81 m^2/d .

A specific yield (S_y) of 0.0059 and storativity of 0.000049 is reported in the GRA-2 (DWAF, 2005) for the fractured-rock aquifers of F30A. Various pumping test data analysis methods yielded S_y values as follows:

- KB-BH1 range from 0.00020 to 0.00044, with an average of 0.00028;
- KB-BH2 range from 0.00017 to 0.00044, with an average of 0.00019; and
- KB-BH3 range from 0.00017 to 0.00044, with an average of 0.00018.

Figure 5-2: Hydrogeology

5.4 Groundwater Levels

Water levels derived from the aquifer tests indicate that groundwater levels range between 10 - 13 mbgl on the Kamiebees Farm. The neighbouring Nama-Khoi Municipal abandoned borehole (number?) displays a water level of 8.53 mbgl, no water levels could be taken on the Wolfkraal Farm, as all boreholes were equipped with windpumps preventing access. The Wolfkraal Farm owner (Mr Karel Louw), however, communicated that water levels range between 18 - 60 mbgl. These water levels vastly vary, and the reliability of this information is uncertain.

The groundwater flow at the site and its surrounds is inferred to be in a westerly direction (Figure 5-3) and regionally north-westwards towards the Buffelsrivier.

5.5 Groundwater Potential Contaminants

Groundwater abstraction for this application does not introduce any contaminants into the hydrogeological system, thus groundwater potential contamination is not applicable. Furthermore, naturally high Total Dissolved Solids (TDS) concentrations are evident due to the groundwater contact with the existing geology.

5.6 Groundwater Quality

No previous groundwater quality data was sourced directly from the Kamiebees Farm 368/1; therefore, water quality was inferred by secondary sources. According to the Groundwater EWR Report (Department of Water and Sanitation, 2016), water quality values of the Median +10% are summarised the Table 5-2. It is evident that all groundwater quality parameters are within the SANS 241-1:2015 Drinking Water Standards, which confirms that the F30A quaternary catchment is of a better water quality class than most of the surrounding Namaqualand quaternary catchments as 79% of groundwater is potable (Department of Water and Sanitation, 2016).

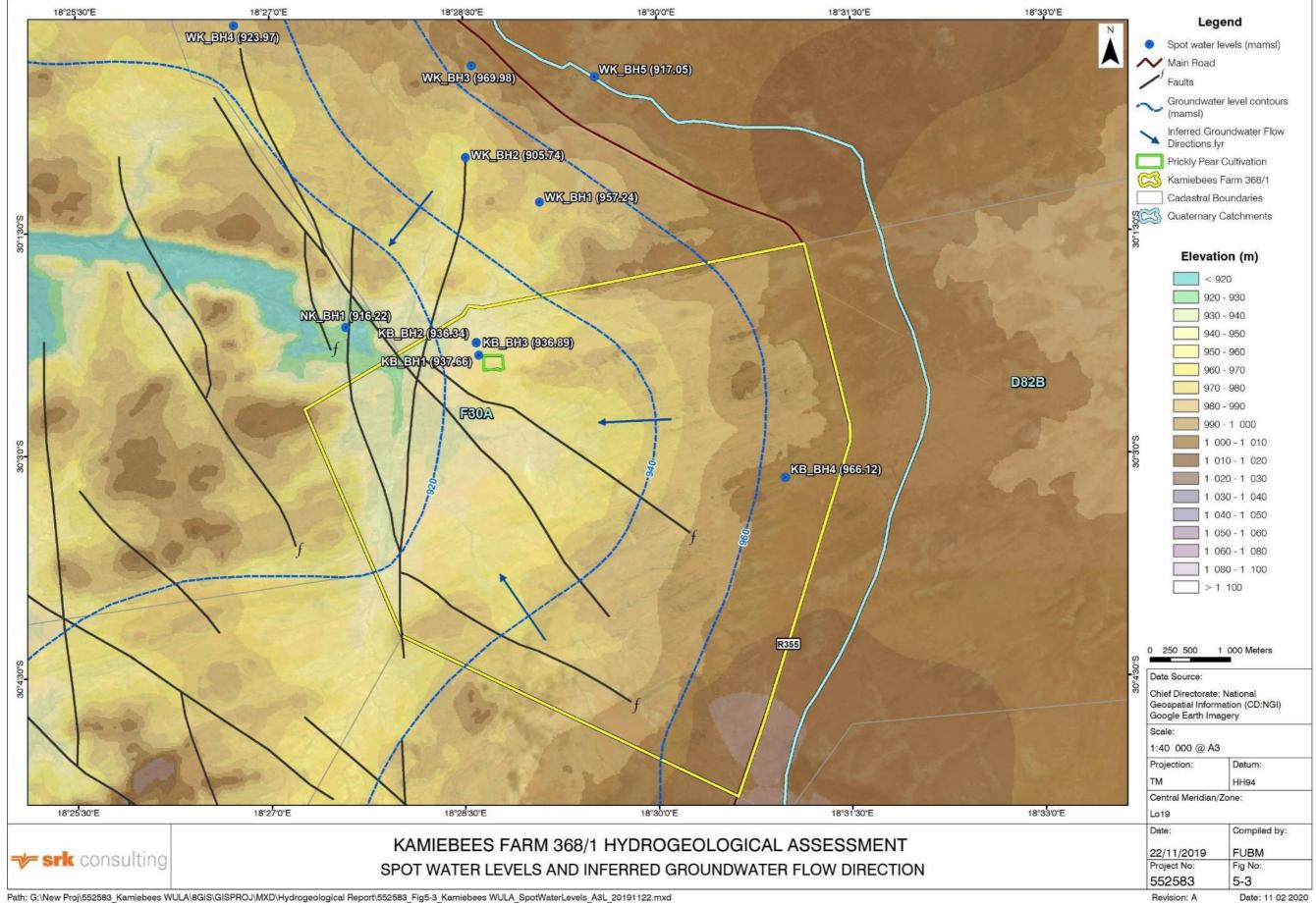

Constituent	Unit	Value	SANS 241-1:2015 Recommended Limits & Risks"
Са	mg/l	69.85	Not specified
Mg	mg/l	366.74	Not specified
Na	mg/l	43.07	Aesthetic ≤200
CI	mg/l	159.72	≤300
SO ₄	mg/l	94.38	Acute Health ≤500
рН	mg/l	8.27	pH operational ≥5.0 ≤ 9.7

 Table 5-2:
 Summary of groundwater quality values of the F30A quaternary catchment

Note: Source – Department of Water and Sanitation, 2016 – Groundwater EWR Report

EC (salinity) values at the site and its surrounds range between 300 and 1 000 mS/m, according to the hydrogeological map (DWAF, 2000). These are high values for EC and exceed the SANS 241-1 2015 Drinking Limits of 1 200 mg/l (aesthetic). Besides being unpalatable, using groundwater for livestock watering and prickly pear irrigation will not result in negative impacts. Locally, the EC values in the study area tend to increase from the 161 - 655 mS/m. No spatial trend is evident from the measured EC values from the hydrocensus boreholes.

The pH values over the study area range between 7.76 and 8.57 and remain fairly constant throughout the study area. This indicates that groundwater in the study area is neutral to alkaline in nature.

6 Aquifer Characterisation

6.1 Groundwater Vulnerability

Groundwater vulnerability was considered in terms of the 'DRASTIC' method of assessment of the intrinsic vulnerability of an aquifer to contamination from the surface (Aller *et. al.*, 1987) and is shown in Figure 6-1. The method considers the following factors, which control the vulnerability of an aquifer to contamination from surface:

•	Depth to water table	(D)
•	Recharge	(R)
•	Aquifer material	(A)
•	Soils	(S)
•	Topography and slope	(T)
•	Impact of the vadose (unsaturated) zone	(I)
•	Hydraulic conductivity	(C)

Aquifer vulnerability is defined as the likelihood for contamination to reach a specified position in the groundwater system after being introduced at some point above the uppermost aquifer.

According the DWAF's aquifer vulnerability map (DWAF, 2013), the site's vulnerability rating is 'Low' to 'Medium' (Figure 6-1). The area where the three water boreholes are located is rated 'Low'.

6.2 Aquifer Classification

An aquifer classification system provides a framework and objective basis for identifying and setting appropriate levels of ground water resource protection. This facilitates the adoption of a policy of differentiated ground water protection.

Other uses include:

- Defining levels of investigation required for decision making;
- Setting of monitoring requirements; and
- Allocation of manpower resources for contamination control functions.

The aquifer classification system used to classify the aquifers is the proposed South African Aquifer System Management Classification of Parsons (1995). This system has a certain amount of flexibility and can be linked to secondary classifications, such as a vulnerability or usage classification. Parsons suggests that aquifer classification forms a very useful planning tool that can be used to guide the management of ground water. Parsons also suggests that some level of flexibility should be incorporated when using such a classification system.

The South African Aquifer System Management Classification (Parsons, 1995) is presented by five major classes⁶:

- Sole Source Aquifer System;
- Major Aquifer System;
- Minor Aquifer System;
- Non-Aquifer System; and
- Special Aquifer System.

The DWS Aquifer Classification Map of South Africa (DWS, 2012) presents three classes of aquifers, namely:

⁶ Definitions are provided in the report glossary

- Poor;
- Minor; and
- Major.

The aquifer in the site area is classified as a 'Poor' aquifer system (Figure 6-2), according to the DWS classification system (DWS, 2012).

A second variable classification is needed for sound decision making, as the ability of an aquifer to yield water to a user is not adequately stated. In this case it was decided to use the aquifer vulnerability to contamination (as described below) as a second parameter. A weighting and rating approach is then used to decide on the appropriate level of ground water protection (Table 6-1).

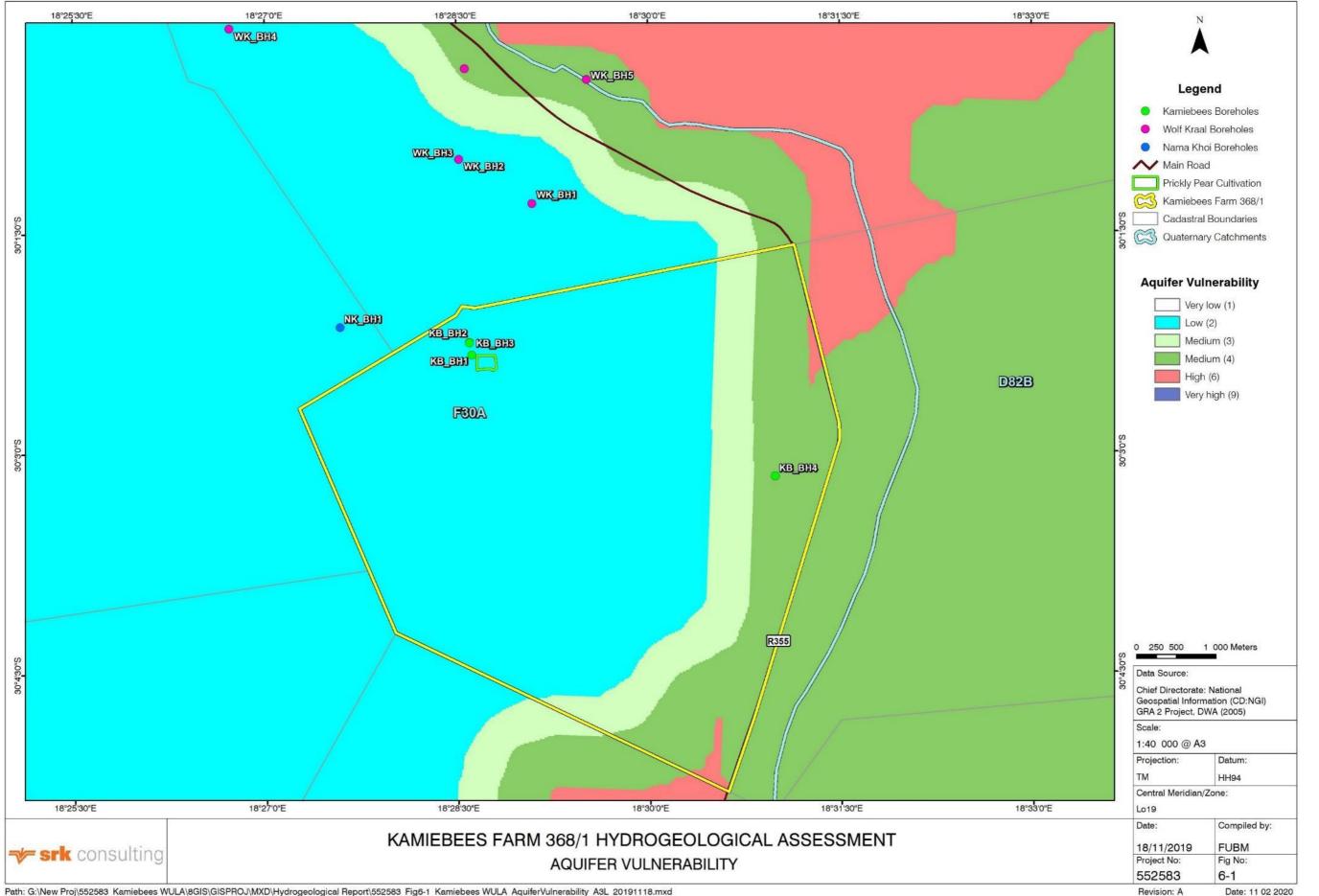
 Table 6-1:
 Ratings for the aquifer quality management classification system

Aquifer Classificatio	Vulnerability				
Class	Points	Class	Points		
Sole Source Aquifer System	6	High	3		
Major Aquifer System	4	Medium	2		
Minor Aquifer System	2	Low	1		
Non-Aquifer System	0				
Special Aquifer System	0 - 6				

6.3 Aquifer Protection Classification

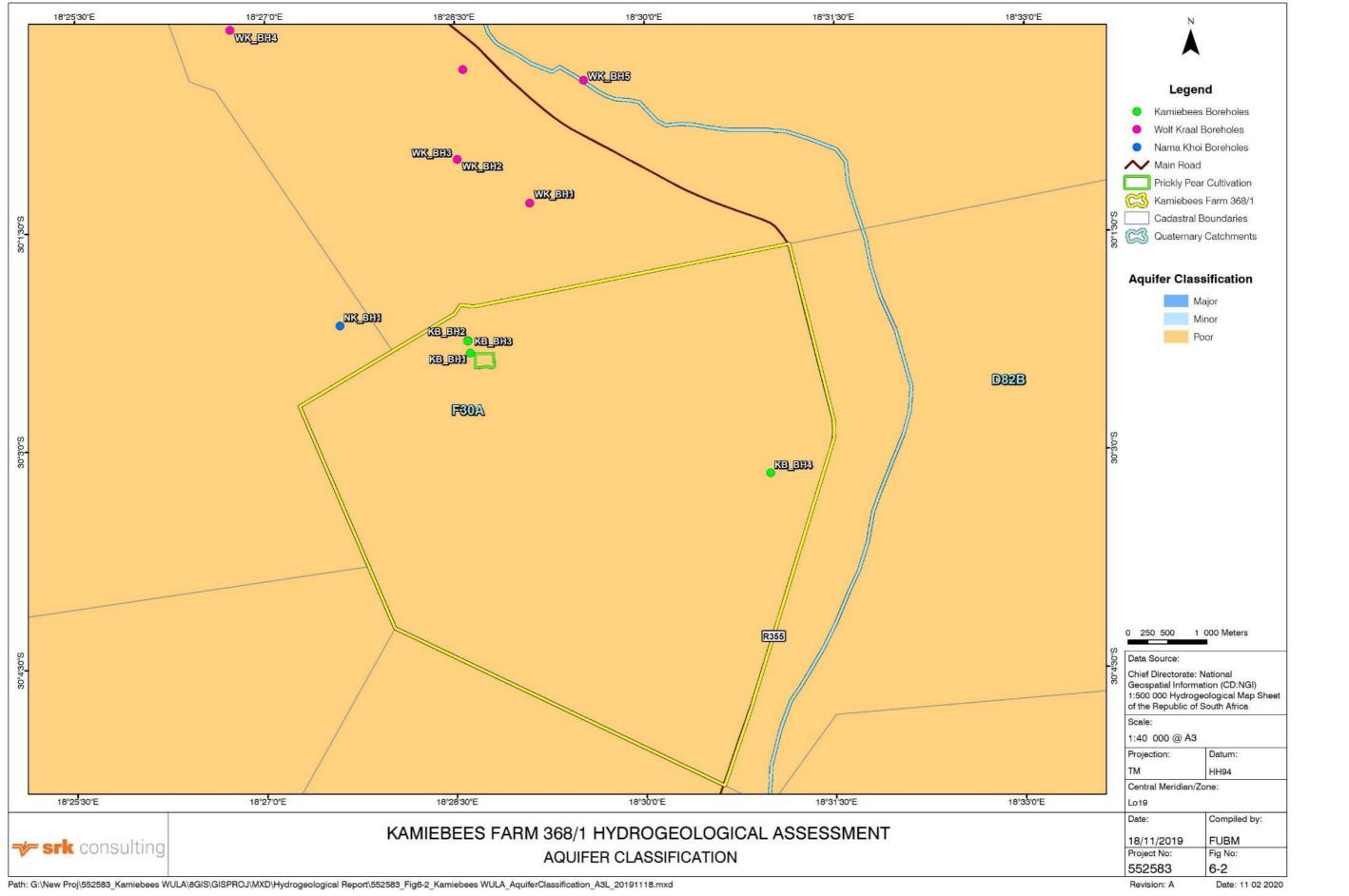
After rating the aquifer system management and the aquifer vulnerability, the ratings are added to obtain a Groundwater Quality Management (GQM) index (Table 6-2).

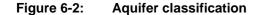
Table 6-2: Appropriate level of groundwater protection required


GQM Index	Level of Protection
<1	Limited Protection
1 – 3	Low Level Protection
4 - 6	Medium Level Protection
7 – 10	High Level Protection
>10	Strictly Non-degradation

Based on the above, the aquifers in the Study Area are classified for protection as follows (Table 6-3):

Table 6-3: Site aquifer classification and vulnerability assessment


Description	Aquifer	Vulnerability	Rating	Protection Level
Fractured Aquifer	Minor (2)	Low (1)	3	Low Level Protection


The above classification implies that the fractured aquifer at the site requires a low level of protection, which will primarily include conservative abstraction to limit drawdown as recommended in Section 4.5, as well as monitoring of the abstraction boreholes (KB-BH1, KB-BH2 and KB-BH3).

Path: G:\New Proj\552583_Kamiebees WULA\8GIS\GISPROJ\MXD\Hydrogeological Report\552583_Fig6-1_Kamiebees WULA_AquiferVulnerability_A3L_20191118.mxd

Figure 6-1: Aquifer vulnerability

7 Groundwater Modelling

Groundwater modelling was not deemed necessary due to the low yielding nature of the site's water boreholes and the low groundwater volume applied for licensing.

8 Assessment of Potential Geohydrological Impacts

This section asses the significance of potential hydrogeological impacts. Practicable mitigation and optimisation measures are recommended, and impacts are rated both without and with the assumed effective implementation of mitigation and optimisation measures. Mitigation and optimisation measures are either:

Essential: measures that must be implemented and are non-negotiable; and

Best Practice: recommended to comply with best practice, with adoption dependent on the proponent's risk profile and commitment to adhere to best practice, and which must be shown to have been considered and sound reasons provided by the applicant if not implemented.

The assessment methodology used to rank and weight these impacts are presented in Appendix D.

8.1 Construction Phase

Not applicable for this study

8.2 **Operational Phase**

8.2.1 Impacts on Groundwater Quantity

The only concern that have been identified that could potentially impact the groundwater quantity is exceeding 77.8 KL/d (28 400 KL/a) of groundwater from the site's three boreholes resulting in drawdown in the local fractured-rock aquifer and which could risk the boreholes running temporarily dry.

Abstraction from boreholes normally results in a water level decline in the abstraction borehole and local surrounding area. As these three boreholes (KB-BH1, KB-BH2 and KB-BH3) are located on a single fault zone, this presents a higher impact should over abstraction and mutual interference occur. For example, boreholes KB-BH2 and KB-BH3, which have fairly shallow depths of 17.3 and 30.2 mbgl, respectively, might run dry should the groundwater table drops to these depths. The extent of the drawdown is dependent on the aquifer's hydraulic conductivity, storage and recharge. Due to the low hydraulic conductivity, the zone of drawdown at the site is likely to be limited and extending along the fault zone in a southeast-northwest direction. As the yield recommended for these boreholes are much lower than the maximum pump yields obtained during the step tests and CDT, coupled with the observed limited drawdown during testing, a reported drought index of *c*.3.84 years (8 years were conservatively allowed in the tests analysis) and very high aquifer storage potential, the significance of impact of abstraction is expected to be **low**.

Best practise to reduce impact is to apply a 12 hour a day pumping schedule at a rate of 0.8 L/s for KB-BH1; 0.4 L/s for KB-BH2 and 0.6 L/s for KB-BH3. This will allow the borehole sufficient time (12 h/d) to recover after each day's abstraction schedule. Such reduced pumping hours will allow the water level to recover and will reduce the significance of the impact to **very low**. See impact rating in Table 8-1 and the impact assessment methodology in Appendix D.

Table 8-1:	Impact rating assessment groundwater quantity – Operational Phase
------------	---

Mitigation	Impact no.	Extent	Intensity	Duration	Consequence	Probability	Significance	Status	Confidence
Without	1	Local	Low	Long-term	Low	Possible	LOW	-	High
		1	1	3	5				
Essential r	nitigation mea	sures:							
• Limit a	abstraction to ≤	≤77.8 KL/	b						
				,	l a low-level cut-o 3-BH1, KB-BH2 a			level from	dropping
	ment and adhe pration, etc.	ere to wate	er saving pr	ocedures and	methodologies, e	e.g. drip irrigati	on, covering res	ervoir to r	educe
Best practi	ice measures:								
Abstra	act groundwate	er volumes	s necessary	for the propos	sed activity, i.e.c.	18 700 KL/a o	r <i>c.</i> 51 KL/d;		
 Limit a windp Abstra K K K 	abstraction to 1 umps. act the required (B_BH1: 0.26 L (B_BH2: 0.13 L (B_BH3: 0.20 L	2 hours p d groundw ./s; ./s; and ./s	er day, or s	shorter to allow e over 12-hour	v the borehole su	fficient time to based on the fo	recover daily. A		
 Limit a windp Abstra Abstra K K K Implet 	abstraction to 1 umps. act the required (B_BH1: 0.26 L (B_BH2: 0.13 L (B_BH3: 0.20 L ment a ground	2 hours p d groundw ./s; ./s; and ./s	er day, or s	shorter to allow e over 12-hour	the borehole sur	fficient time to based on the fo	recover daily. A		
 Limit : windp Abstra K K K Imple Natural mit Very I 	abstraction to 1 umps. act the required (B_BH1: 0.26 L (B_BH2: 0.13 L (B_BH3: 0.20 L ment a ground tigation: ow groundwate	2 hours p d groundw ./s; ./s; and ./s water mor er abstrac	ver day, or s vater volume nitoring syst	shorter to allow e over 12-hour tem to monitor r recharge (dro	v the borehole su	fficient time to based on the fo ality, volumes a	recover daily. A Ilowing rates: abstracted and v	vater level	ls.
 Limit a windp Abstra Abstra K K K Imple Natural mit Very I 	abstraction to 1 umps. act the required (B_BH1: 0.26 L (B_BH2: 0.13 L (B_BH3: 0.20 L ment a ground tigation: ow groundwate	2 hours p d groundw ./s; ./s; and ./s water mor er abstrac	ver day, or s vater volume nitoring syst	shorter to allow e over 12-hour tem to monitor r recharge (dro	y the borehole sur period per day b groundwater qua bught index of 3.8	fficient time to based on the fo ality, volumes a	recover daily. A Ilowing rates: abstracted and v	vater level	ls.

No impacts on groundwater quality were identified.

8.2.3 Groundwater Management

The following groundwater management measures are recommended:

- To prevent groundwater over-abstraction and damage to the pumps if solar or electrical submersible pumps are used, install a low-level pump cut-off switch at 45 mbgl; 13.5 mbgl and 25 mbgl for boreholes KB-BH1, KB-BH2 and KB-BH3, respectively.;
- Limit abstraction form the three water boreholes not to exceed the daily pumping rates recommended in Table 4-5;
- Initiate a groundwater monitoring programme for the three targeted boreholes, as follows:
 - The water level and volumes abstracted must be recorded on at least a monthly basis. Best results are obtained if automatic flow meters and water level recorders set to take hourly readings are installed;
 - Water samples should be collected at the water borehole on a six-monthly basis and submitted to SANAS accredited laboratories for water quality analysis as per the SANS 241:2015 guidelines; and
 - A SACNASP registered hydrogeologist should evaluate the monitoring data on an annual basis and compile a monitoring report for submission to the regulatory authority.
- Implement all the essential mitigation measures included in Table 8-1.

8.3 Decommissioning Phase

Not applicable.

8.4 Post-Operational Phase

Not applicable.

9 Groundwater Monitoring System

9.1 Introduction

A groundwater monitoring plan should be implemented as soon as possible to identify trends in water level and water quality behaviour in the aquifers during operation. As the proposed activity does not introduce any contamination, only groundwater level and abstraction rates should be monitored on a monthly basis for the duration of the activity, whereas groundwater quality may be measured on a biannual (at least annual) basis. This information will inform the ongoing implementation and development of a water management strategy and management of impacts within the site area and water boreholes.

The results of monitoring, and any changes to the water management strategies, must be reported to management and DWS as per the WUL for specific items, and a detailed monitoring report submitted to the DWS on an annual basis. The report serves to notify DWS of areas of reduction in water supply and the actions implemented, in progress or planned to address the identified impacts including source identification and control.

Water quality and quantity data is assessed against the baseline data (i.e. data contained in this report) and subjected to trend analysis. Should a reduction in water supply be detected, the applicant will notify the Regional Director of DWS as soon as it is practicable.

9.2 Groundwater Monitoring Network

9.2.1 Source Plume, Impact and Background Monitoring

Not applicable as the proposed activity does not introduce contaminants into the hydrogeological system

9.2.2 System Response Monitoring Network

Not applicable as the proposed activity does not introduce contaminants into the hydrogeological system

9.2.3 Monitoring Frequency

- Water level and abstraction monitoring frequency should be monthly unless the monitoring results indicated that a change in frequency is required;
- Monitoring must commence as soon as possible;
- Water levels in the borehole should be measured on a monthly, preferably weekly basis. Best practise is to install an automatic recorder (logger) in the borehole to measure the water level, temperature and electrical conductivity (salinity) hourly; and
- Water quality should be measured on a bi-annual basis (at least annually), to ensure that the water quality is fit for purpose and not deteriorating.

9.3 Monitoring Parameters

The following parameters should be included in the monitoring programme at each water borehole:

 Water level depth (metres below collar), total volumes abstracted to date (KL or m³), pumping rate (KL/h) and pumping schedules (h/day); and • Key parameters for the water quality analysis include pH, EC, TDS, macro-chemistry (Na, Mg, K, Ca, NH₄, Cl, SO₄, total alkalinity, PO₄, F, NO₃) and microbiology if used for human consumption.

It is advisable that the following parameters are monitored to determine if the water is suitable for irrigation, livestock watering and human consumption: COD, TOC, SAR and trace-metals (Fe, Mn, Al, Se, Cu, Pb, Zn, Cd, As, Sb).

9.4 Monitoring Boreholes

No suitable boreholes were identified. Monitoring of the three water supply boreholes will suffice for purpose of this WULA.

10 Groundwater Environmental Management Programme

10.1 Current Groundwater Conditions

These are summarised in the Sections above.

10.2 Predicted Impacts of Facility

The impacts are assessed above (Section 8) as Low to Very Low.

10.3 Mitigation Measures

10.3.1 Lowering of Groundwater Levels during Operation

The following mitigation measures are recommended:

- Maintain conservative abstraction rates recommended in Table 4-5;
- If solar or electrical submersible pumps are used, install a low-level cut-off switch to prevent water level from dropping below 45 mbgl; 13.5 mbgl and 25 mbgl for boreholes KB-BH1, KB-BH2 and KB-BH3 respectively; and
- Implement and adhere to water saving procedures and methodologies.

10.3.2 Rise of Groundwater Levels Post-Facility Operation

Not applicable to this application as the proposed activity does not introduce additional recharge or change hydraulic properties which could potentially facilitate a rise in groundwater levels.

10.3.3 Spread of Groundwater Pollution Post-Facility Operation

Not applicable to this application as the proposed activity does not introduce contaminants into the hydrogeological system Post Closure Management Plan

10.4 Remediation of Physical Activity

Not applicable to this application.

10.5 Remediation of Storage Facilities

Not applicable to this application.

10.6 Remediation of Environmental Impacts

Not applicable to this application.

10.7 Remediation of Water Resources Impacts

Not applicable to this application.

10.8 Backfilling of the Pits

Not applicable to this application.

11 Conclusions and Recommendations

Based on the data and information discussed in this report, the following can be concluded regarding the geohydrology and water borehole use at Kamiebees Farm 368/1 site:

- All three targeted boreholes were yield tested and the data analysed to determine their safe yields. The safe yields for boreholes KB-BH1, KB-BH2 and KB-BH3 are 0.4 L/s, 0.2 L/s and 0.3 L/s, respectively. This equates to a total of 77.8 KL of groundwater per day or 28 382 KL per annum, which are considered as conservatively low abstraction rates. Furthermore, SJR Boerdery plans on abstracting a groundwater volume of *c*.51 KL/d or *c*.18 700 KL/a, which is significantly lower (35% lower) than the recommended safe yield of the three boreholes;
- The hydrocensus gathered groundwater quality and groundwater quality data within a 5 km radius of the three Kamiebees Farm water boreholes under consideration for a WUL. A total of 10 boreholes were surveyed, which comprise four Kamiebees boreholes, five Wolfkraal boreholes and one Nama Khoi Municipal borehole;
- Water quality in Kamiebees Farm targeted boreholes has relatively high salinity implying that it is classified as 'brackish water';
- Data gathered on the hydrogeology of the area and the localities of surrounding boreholes, imply
 that it is highly unlikely that the abstraction of groundwater from the Kamiebees Farm would
 negatively impact the Wolfkraal Farm or any other farms in the surrounding area. This statement
 is made on the basis that Wolfkraal's boreholes are located on different lineaments (faults) and
 are spatially separated by impenetrable, solid geological formations from the Kamiebees Farm
 boreholes. It is postulated that reported groundwater drawdown at Wolfkraal could be attributed to
 the severe drought being experienced in the region;
- The proposed impact of groundwater abstraction is 'low'. Should the proposed mitigation measures be implemented the impact on groundwater quantity would reduce to 'very low'; and
- From a hydrogeological perspective, there is no obvious reason why utilising groundwater to support the proposed activity should not be authorised provided the recommendations in this report are implemented and adhered to.

Based on the data and information discussed in this report, the following is recommended regarding the groundwater resources at the site:

- Equip and use water boreholes KB-BH1, KB-BH2 and KB-BH3 as indicated in Table 4-5;
- If solar or electrical submersible are to be used, install low-level cut-off switches in these boreholes at 45, 13.5 and 25 mbgl, respectively;
- Install a volume meter (flow meter) at each borehole being used for irrigation water supply;
- Obtain a water level dip meter for the operator to measure and record the water level depth in each borehole on at least a monthly basis, preferably before abstraction has commenced for that day. Alternatively, best practise is to install an automatic flow meter and water level recorder (logger) at each borehole set to take hourly readings;
- Implement a groundwater monitoring and management plan as indicated in Subsections 8.2.3 and 9 of this report; and
- Implement all essential mitigation measures listed in this report (subsection 8).

Prepared By

Annalisa Vicente Hydrogeologist

Reviewed By

D Visser *Pr Sci Nat* Principal Hydrogeologist

Reviewed By

SRK Consulting - Certified Electronic COI 552583/43872/Report 1680-9313-7339-DALC-13/02/2020 rhas given permission for is This signature has been printed digitally use for this document. The details are sto In the SRK Signature Database

C Dalgliesh *CEAPSA* Registered EAP Partner

All data used as source material plus the text, tables, figures, and attachments of this document have been reviewed and prepared in accordance with generally accepted hydrogeological practices

12 References

Council for Geoscience (2010). Based on the 1:250 0000-Scale *Geological Map Sheet 3018 Loeriesfontein*, published by the Chief Directorate: Surveys and Mapping, Mowbray.

Department of Water Affairs and Forestry, (2005). *Groundwater Resource Assessment Phase 2*. Reports 2C and 3E. Pretoria.

Department of Water and Sanitation, South Africa, October 2016. *Determination of Ecological Water Requirements for Surface water (river, estuaries and wetlands) and Groundwater in the Lower Orange WMA*. Groundwater EWR report. Prepared by: WSM Leshika Consulting (Pty) Ltd. Authored by K. Sami. DWS Report No: RDM/WMA06/00/CON/COMP/0416.

Department of Water and Sanitation (2016). *National Water Act, 1998 (Act No. 36 Of 1998)*, Revision of General Authorisation for the Taking and Storing of Water. Notice 538 of 2016 published in Government Gazette No. 40243 of 2 September 2016.

Fetter, C.W. (1994) *Applied Hydrogeology*. 3rd Edition, Macmillan College Publishing Company, New York.

Jooste Cylinder & Pump Co. (2019). *The Jooste AS borehole cylinder*. [online] Available at: https://www.joostecylinders.com/index.php?page=as-series-borehole-cylinder [Accessed 29 Oct. 2019].

Midgley, D.C., Pitman, W.V., and Middleton, B.J. (1994). *Surface water resources of South Africa*, 1990. Volume III, Volume III. [Pretoria], Water Research Commission

South African National Standard (SANS) 241-1:2015. Drinking water Part 1: *Microbiological, physical, aesthetic and chemical determinands*. Edition 2, ISBN 978-0-626-29841-8.

South African National Standard (2003). SANS 10299-4:2003 Edition 1, *Development, Maintenance and Management of Groundwater Resources*, Part 4: Test-Pumping of Water Boreholes. ISBN 0-626-14912-6.

Todd, D.K. (1959) Groundwater hydrology. John Wily & Sons, Inc., New York.

Van Tonder, G, Bardenhagen, I, Riemann, K, Van Bosch, J, Dzanga, P and Xu, Y, (2002). *Manual on Pumping Test Analysis in Fractured-Rock Aquifers*. WRC Report No. 1116/1/02, ISBN No. 1 86845 861 X.

Weather-and-climate.com. (2019). *Climate and average monthly weather in Springbok (Northern Cape), South Africa*. [online] Available at: https://weather-and-climate.com/average-monthly-Rainfall-Temperature-Sunshine,Springbok,South-Africa [Accessed 28 Oct. 2019].

Appendices

Appendix A: Pumping Test Data, Graphs and Photographs

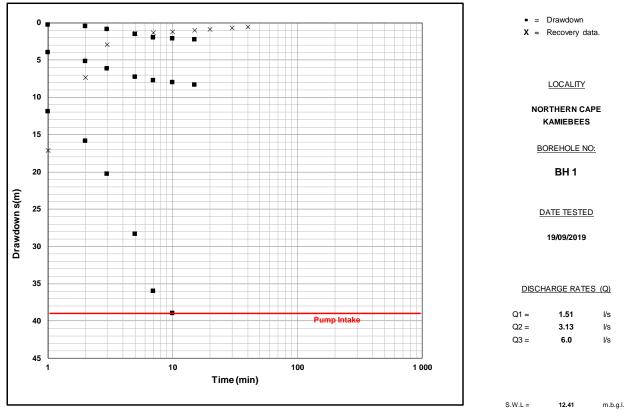
Telephone: 043-732 1211

Copyright subsists in this work. No part of this work may be reproduced in any form or by any means without the publisher's written permission. Any unauthorised reproduction of this work will constitute a copyright infringement and render the doer liable under both civil and criminal law.

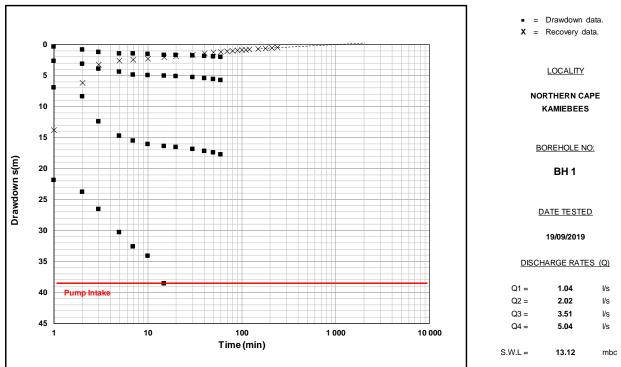
Abbreviations

Fax no: 043-732 1422 EC Electrical conductivity PUIMPS Fax to e-mail: 0866 717 732 mbgl Meters below ground level E mail: office@abpumps.co.za mbch Meters below casing height nbdl Meters below datum level Meters above ground level magl Litres per second L/S PM Rates per minute s/w/L Static water level Microsiemens per centimeter **BOREHOLE TEST RECORD** Ground water solutions t/a AB Pumps CC P2239 PR0JECT # BBR ABEI CONSULTANT: AARDBBOR ISAAC DISTRICT: SPRINGBOK KOLEN PRODUCTION BONUS PROVINCE: NORTHERN CAPE ZANELE FARM / VILLAGE NAME : KAMIEBEES DATE TESTED: 19/09/2019 EC meter number MAP REFERENCE: CO-ORDINATES: FORMAT ON GPS: hddd °mm 'ss.s hddd °mm.mmm hddd.ddddd S 30.03885 LATITUDE: OR OR E 18.47694 LONGITUDE: BOREHOLE NO: BH 1 TRANSMISSIVITY VALUE: TYPE INSTALLATION: WINDPUMP BOREHOLE DEPTH: (mbgl) 54.30 COMMENTS: SAMPLE INSTRUCTIONS : Water sample taken Yes No Test for: macro bacterio-logical DATA CAPTURED BY: ELZAAN DATA CHECKED BY: AVN Date sample taken 20/09/2019 If consultant took sample, give name: Time sample taken 09H00 CONSULTANT GUIDELINES BOREHOLE DEPTH: m STEP 1: l/s WATER STRIKE 1 m BLOW YIELD: STEP 2: l/s WATER STRIKE 2: m STATIC WATER LEVEL: STEP 3: l/s WATER STRIKE 3: m PUMP INSTALLATION DEPTH: STEP 4: l/s COMMENTS: m RECOVERY: STEP 5: l/s AFTER STEPS: STEP 6: TELEPHONE NUMBERS PHONE : (NAME & TEL) l/s h STEP DURATION: AFTER CONSTANT: min h UNIT QTY UNIT QTY DESCRIPTION: NO 54.30 STRAIGHTNESS TEST: М 0 BOREHOLE DEPTH AFTER TEST: VERTICALLY TEST: NO BOREHOLE WATER LEVEL AFTER TEST: (mbch) м 15.06 0 NO RUST CASING DETECTION: SAND/GRAVEL/SILT PUMPED? YES/NO 0 SUPPLIED NEW STEEL BOREHOLE COVER NO 0 DATA REPORTING AND RECORDING NO 1 BOREHOLE MARKING NO 0 SLUG TEST: NO 0 SITE CLEANING & FINISHING NO 1 LAYFLAT (M): м 50 LOGGERS FOR WATERLEVEL MONITORING NO 1 LOGGERS FOR pH AND EC: NO 0 It is hereby acknowledged that upon leaving the site, all existing equipment is in an acceptable condition. SIGNATURE: NAME: DESIGNATION: DATE:

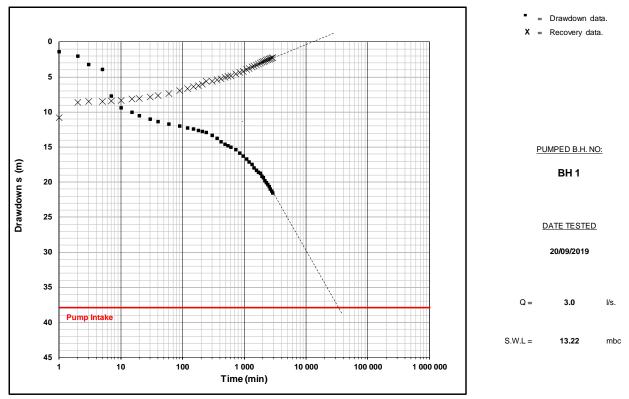
					ONTROL SHEET			
				utions t/a AB I		1		
Borehole number	:	BH		Old / Alternativ	/e number:			
Contractor:		AB PL	JMPS	Supervisor:			ABEL	
Operator:		ISA	AC	Rig number &	Type rig:		27	
			EXISTING	EQUIPMENT				
Type pump	Depth	Condition	Drive unit	Condition	Pump house	Condition	R	emarks
WINDPUMP	21.5	GOOD	WIND	GOOD				
-				EQUIPMENT				
Pump type		Depth installe		Date & time (Date & time (com		
BP 50)		.74		019 13H30	1	9/09/2019 201	150
STEP		DURATI		STEPTEST DI	<u>= I AILS</u> /ERY (MIN)	YIELD (1/8)	DRAWDOWN (m
-				RECOV				
2			0			1.04 2.02	l/s l/s	2.01
3			0			3.51	/s	5.75 17.79
4			5		240	5.04	∥s I∕s	38.62
5		1	5		240	5.04	l/s	30.02
6				1			/s	1
7				1			∥3 I∕s	
8				1			l/s	
Calibration:		4	0	1	40		l/s	
TOTAL:			35		280		l/s	
COMMENT:				· · · · · · · · · · · · · · · · · · ·	-	·		•
		CON	NSTANT RAT	E DISCHARGE	TEST			
Pump type		Depth installe	ed (m)	Date & time (started)	Date & time (com	pleted)	
BP 50)		.74	20/09/2019	08H20	24/09/2019	08H20	
Yield I/s		Drawdown (n		Duration (mir		Recovery (min)		
3.04			.56		2880		2880	
Total: (Multi-rate a	and Constan			1	3115		3160	
COMMENT:		it Discharge fat	e)		5115		3100	
					05			
				MAINTENAN				
Work time:		hour	Transport exis	sting equipm.	Km	Travelling (To fix);		Km
List of parts repla	ced or repai	ired:						
				-				
		Borehole nur	nber	Duration (mir	n) CONSTANT	Drawdown (m)	Hand/logger	Distance (m)
Observation Hole	1	BH	12	2	2880	0.8	HAND	180
Observation Hole	2	BH	13	2	2880	0.79	HAND	170.9
Observation Hole	3							(
Observation Hole	4							
Observation Hole	5							
			GE	NERAL				
ESTABLISHMEN	IT	From:		To:				
Site Move		From project#	P2239	To #:	P2239	Travelling km:		0.18
		Village	Borehole no	Village	Borehole no	1		
						1		
		KAMIEBEES	BH 3	KAMIEBEES	BH 1			
Maintenance:		Work time hr		Parts repaired/ replaced		Travelling km		
After test measure	ements	Water level	15.06	Borehole depth	54.30	Casing depth m		RUST
Water level before	e installing te	est pump: (mbc	h)	12.41	_			
Depth before inst	alling test pu	ımp:		54.30				
Testpump Installe		Once /Twice /	/More	Reason:				
Installed Testpum			0ls/s	Reason:				
Was existing equi	•		Yes:	No:	f pot whore week	it loft		
GPS Unit number		Stalied.	103.		If not where was	it ieft:		
				0				
EC Unit number:				0				
Remarks: Signed Contracto	or:				Signed Consulta	nt:		

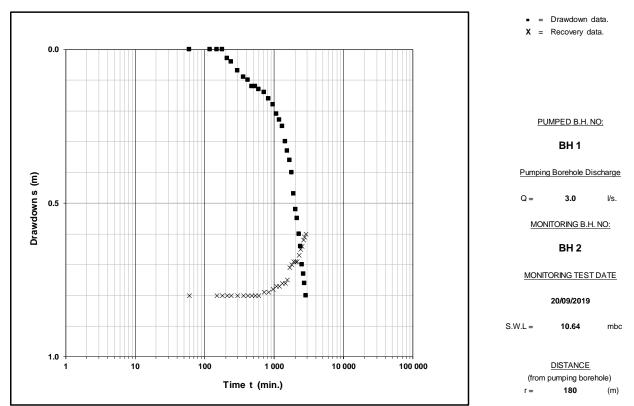

						FO	RM 5		,					
BOREHOLE PROJ NO :	TEST RECOR	D SHE		MAP REFER			a REC	OVERI		PROVI			NORTH	HERN CAPE
BOREHOLE ALT BH NO:	NO:	1 2200	BH 1 0		LINOL.	Ū				DISTRI SITE N	CT:		SPRIN	GBOK
ALT BH NO: BOREHOLE	DEPTH			54.30	DATUMIE	VEL ABOVE	CASINO	- (m):	0.33	EXISTI	NG PUMP:		WINDF	IIMP
WATER LEVI				12.79		EIGHT (mag			0.12		RACTOR:		AB PUI	
DEPTH OF P	′UMP(m):			51.74	DIAM PUM	P INLET (mr	n):		170.00	PUMP	TYPE:		BP 50	
				CALIBRAT			VERY							
DISCHARGE	RAIE 1		RPM	194	DISCHARC	JE RAIE 2		RPM	384	DISCH	ARGE RAT	E 3	RPM	711
DATE:	19/09/2019		11H00		DATE:	19/09/2019		11H15			19/09/201		11H30	
	DRAW	YIELD		RECOVERY		DRAW	YIELD	TIME	RECOVERY	TIME	DRAW		TIME	RECOVERY
(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN) 1	DOWN (M)		(MIN)	(M)	(MIN)	DOWN (M	(L/S)	(MIN) 1	(M)
1	0.29		1		•	3.98	2.70	1		1	11.91	5.40		17.15
2	0.50		2		2	5.19	0.40	2		2	15.88	5.40	2 3	7.34
3	0.86	4.54	3		3	6.16	3.13	3		3	20.32	0.04	-	2.92
5	1.54	1.51	5		5 7	7.30		5		5	28.34	6.01	5	1.43
7	2.01	4 50	7	+		7.76	3.10	7	ł	7	36.04		7	1.32
10	2.15	1.50	10	+	10	8.04	0.00	10	<u> </u>	10	38.99	F 05	10	1.20
15	2.27		15		15	8.37	3.09	15	ł		38.99	5.05	15	1.03
	+		20			<u> </u>		20	ł		38.99	5.04	20	0.86
			30					30			38.99	5.04	30	0.72
	+		40					40					40	0.57
			50				<u> </u>	50					50	
	_		60					60					60	
	_		70					70					70	
	_		80					80					80	
			90					90					90	
	_		100					100					100	
	_		110					110					110	
	_		120					120					120	
			150					150	-				150	
D100114D05			0.014		DIGGUIAD					DIGOLI		-		
DISCHARGE	RAIE 4		RPM		DISCHARC	JE RAIE 5	TIME	RPM			ARGE RAT		RPM	
DATE:		TIME:			DATE:		TIME:			DATE:		TIME:		
TIME	DRAW	YIELD	TIME	RECOVERY		DRAW	YIELD	TIME	RECOVERY	TIME	DRAW	YIELD	TIME	RECOVERY
(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (N	(L/S)	(MIN)	(M)
1	_		1		1			1		1			1	
2			2		2			2	-	2			2	
3			3		3			3	-	3			3	
5			5		5			5	-	5			5	
7			7		7	ł		7	l	7			7	
10			10		10			10	l	10			10	
15			15		15			15		15			15	<u> </u>
			20					20					20	
			30			ł		30	ł				30	
			40					40					40	
		<u> </u>	50				<u> </u>	50				<u> </u>	50	
			60					60					60	
		<u> </u>	70				<u> </u>	70				<u> </u>	70	
	_		80					80					80	
	_		90					90					90	
	_		100					100					100	
	<u> </u>		110					110					110	
			120					120					120	_
ļ	<u> </u>	L	150			ļ	L	150	ļ			L	150	ļ
	<u> </u>	L				ļ	L	<u> </u>	ļ			L		
COMMENTS	:													
S/W/L: (mbcł	n) 12.41													

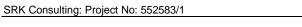
BOREHOU	E TEST REC	טאט פו	HEET	STEPPED I	DISCHAR	-	RM 5 RECO							
PROJ NO :	LILJIKEU	P2239		MAP REFER	ENCE:	0				PROVI	NCE:	NORTH	IERN C	APE
BOREHOLE		BH 1								DISTRI		SPRIN	GBOK	
ALT BH NO: ALT BH NO:		0 0								SITE N	AME:	KAMIE	BEES	
	E DEPTH (m)	0	54.30		DATUMLE	EVEL ABOV	E CASIN	IG (m):	0.33	EXISTI	NG PUMP:	WINDF	UMP	
WATER LE\	VEL (mbdl):		13.12		CASING H	IEIGHT: (ma	agl):	- ()	0.12	CONTRACTOR: AB PUMP				
DEPTH OF	PUMP (m):		51.74			/IP INLET (m			170.00	PUMP TYPE:		BP 50		
						DISCHARG	E TEST	-		DIGGU				
DISCHARG	ERAIE 1		RPM	172	DISCHAR	GE RATE 2		RPM	249	DISCH	ARGE RATI	E 3	RPM	416
DATE:	19/09/2019		13H30		DATE:	19/09/201		14H30			19/09/201		15H30	
	DRAW	YIELD	TIME (MIN)	RECOVERY		DRAW	YIELD	TIME	RECOVERY	TIME (MIN)	DRAW DOWN (M	YIELD	TIME	RECOVER
(MIN)	DOWN (M)	(L/S)		(M)	(MIN)	DOWN (M)	· · ·	(MIN)	(M)	(IVIIIN)	, in the second s) (L/S)	(MIN)	(M)
1	0.36		1		1	2.70	1.73	1		1	6.97	2.04	1	
2	0.84		2		2	3.13		2		2	8.38	2.94	2	
3	1.26		3		3	3.98	2.02	3		3	12.49		3	
5	1.46	1.05	5		5	4.46		5		5	14.75	3.51	5	
7	1.51		7		7	4.89	2.00	7		7	15.59		7	
10	1.58	1.01	10		10	4.97		10		10	16.12	3.53	10	
15	1.70		15	<u> </u>	15	5.04	2.03	15	<u> </u>	15	16.40	<u> </u>	15	<u> </u>
20	1.75	1.04	20		20	5.12		20		20	16.61	3.53	20	
30	1.80		30		30	5.31	2.01	30		30	16.93		30	
40	1.89	1.04	40		40	5.44		40		40	17.23	3.54	40	
50	1.95		50		50	5.63	2.02	50		50	17.46	L	50	
60	2.01	1.04	60	ļ	60	5.75	<u> </u>	60	ļ	60	17.79	3.51	60	ļ
70			70		70			70		70			70	
80			80		80			80		80			80	
90			90		90			90		90			90	
100			100		100			100		100			100	
110			110		110			110		110			110	
120			120		120			120		120			120	
pН			150		pН			150		pН			150	
TEMP		°C	180		TEMP		°C	180		TEMP		°C	180	
EC	3.91	MS/cm	210		EC	3.89	MS/cm	210		EC	3.87	MS/cm	210	
DISCHARG	E RATE 4		RPM	599	DISCHAR	GE RATE 5		RPM		DISCH	ARGE RATI	E 6	RPM	
DATE:	19/09/2019	TIME:	16H30		DATE:		TIME:	•		DATE:		TIME:		
TIME	DRAW	YIELD	TIME	RECOVERY	TIME	DRAW	YIELD	TIME	RECOVERY	TIME	DRAW	YIELD	TIME	RECOVER
(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (M)		(MIN)	(M)	(MIN)	DOWN (M		(MIN)	(M)
1	21.91	\ · - /	1	13.82	1	- ()	\ · - /	1	. /	1		(/	1	. /
2	23.82		2	6.17	2			2		2			2	
3	26.58	4.67	3	3.20	3			3		3			3	
5	30.33	5.01	5	2.58	5			5		5			5	
3 7	32.60	3.01	7	2.30	7			7 7		7			3 7	
		E 04	, 10		, 10									
10	34.15	5.04	15	2.30	15			10 15		10 15			10 15	
15	38.62	4.00		2.07										
	38.62	4.86	20	1.92	20			20		20			20	
	38.62	4.84	30	1.64	30			30		30			30	
	38.62	4.84	40	1.42	40			40		40			40	
			50	1.27	50			50		50			50	
			60	1.15	60			60		60			60	
			70	1.07	70			70		70			70	<u> </u>
			80	0.99	80			80		80			80	
			90	0.91	90			90		90			90	
			100	0.86	100			100		100			100	
			110	0.81	110			110		110		<u> </u>	110	<u> </u>
			120	0.76	120	<u> </u>	<u> </u>	120		120		<u> </u>	120	ļ
						1		150		рН	ļ	<u> </u>	150	ļ
рН			150	0.66	рН									•
pH TEMP		°C	150 180	0.66 0.58	TEMP		°C	180		TEMP		°C	180	
		°C µS/cm					°C µS/cm	180 210		TEMP EC		°C µS/cm	180 210	
TEMP			180	0.58	TEMP									
TEMP			180 210	0.58 0.52	TEMP			210					210	

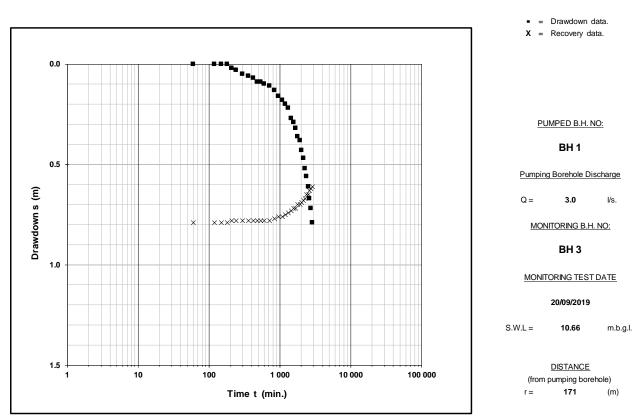

				FORM 5	F							
				NT DISCHAR	GE TES	T & RECOV	ERY					
	HOLE TEST R		SHEET		ENGE	0.00.0000				_	NODT	
	NO : HOLE NO:	P2239 BH 1		MAP REFER	ENCE:	S 30.03885 E 18.47694			PROVINCE DISTRICT:		SPRIN	HERN CAPE
ALT BH		0				L 10.47034	r		SITE NAME			
ALT BH		0									KAMIE	BEES
BORE	HOLE DEPTH:	54.30)	DATUMLEV	EL ABO\	/E CASING (r	n):	0.33	EXISTING	PUMP:	WINDF	PUMP
	R LEVEL (mbdl)			CASING HE				0.12	CONTRAC		AB PUI	MPS
DEPTH	HOFPUMP(m)	: 51.74		DIAM PUMP	INLET(m	וm):		170	PUMP TYP	E:	BP 50	
CONST	ANT DISCHAR	GE TEST &	& RECOVER	Y								
TEST S	TARTED		-	TEST COMP	LETED			•				
DATE	20/09/2019	TIME:	08H20		DATE:	22/09/2019	TIME	08H20	TYPE OF F	UMP∙		BP 50
	20,00,2010		00.120			VATION HOL			ATION HOL		OBSEF	RVATION HOLE 3
					NR:	BH 2		NR:	BH 3		NR:	
	DISCHARGE B	ORFHOL	F		Distanc		180	Distance		170.9	Distan	ce(m):
TIME	DRAW	YIELD	TIME	RECOVERY	TIME:	Drawdown		TIME:	Drawdown		TIME:	Drawdown
(MIN)	DOWN (M)	(L/S)	MIN	(M)	(min)	m	(m)	(min)	(m)		(min)	(m)
1	1.36		1	10.80	1			1			1	
2	2.04		2	8.61	2			2			2	
3	3.22		3	8.50	3	 		3	ļ	ļ	3	
5	3.90	2.40	5	8.48	5			5			5	
7	7.66	3.03	7 10	8.40	7 10	+		7 10			7 10	
10 15	9.36 10.02	3.01	10 15	8.32 8.14	10 15	+		10 15			10 15	+
20	10.02	5.01	20	8.02	20	1		20	ł	1	20	
30	11.02	3.04	30	7.81	30			30			30	1
40	11.36		40	7.63	40			40		1	40	
60	11.70	3.00	60	7.31	60	0.00	0.80	60	0.00	0.79	60	
90	11.98		90	6.92	90			90			90	
120	12.27	3.04	120	6.61	120	0.00		120	0.00	0.79	120	
150	12.40	0.05	150	6.38	150	0.00	0.80	150	0.00	0.79	150	
180 210	12.61 12.75	3.05	180 210	6.19 6.00	180 210	0.00	0.80 0.80	180 210	0.00	0.79 0.78	180 210	
210	12.75	3.00	210	5.60	210	0.03	0.80	210	0.02	0.78	210	
300	13.29	0.00	300	5.61	300	0.07	0.80	300	0.05	0.78	300	
360	13.74	3.04	360	5.41	360	0.09	0.80	360	0.06	0.78	360	
420	14.24		420	5.23	420	0.10	0.80	420	0.07	0.78	420	
480	14.54	3.02	480	5.04	480	0.12	0.80	480	0.09	0.78	480	
540	14.82		540	4.91	540	0.12	0.80	540	0.09	0.78	540	
600	15.03	3.04	600	4.79	600	0.13	0.80	600	0.10	0.78	600	
720 840	15.38 15.87	3.04	720 840	4.52	720 840	0.14	0.79 0.79	720 840	0.11 0.13	0.78	720 840	
960	16.26	3.04	960	4.33	960	0.18	0.79	960	0.13	0.76	960	
1080	16.69	3.03	1080	3.93	1080	0.21	0.77	1080	0.18	0.76	1080	
1200	17.09		1200	3.75	1200	0.23	0.77	1200	0.20	0.75	1200	
1320	17.46	3.05	1320	3.56	1320	0.25	0.76	1320	0.22	0.74	1320	
1440	17.96		1440	3.39	1440	0.30	0.76	1440	0.27	0.73	1440	
1560	18.28	3.02	1560	3.24	1560	0.33	0.75	1560	0.29	0.72	1560	<u> </u>
1680	18.56	0.01	1680	3.11	1680	0.36	0.71	1680	0.32	0.72	1680	-
1800	18.74	3.01	1800	2.98	1800 1920	0.40	0.70	1800	0.36	0.70	1800	
1920 2040	19.11 19.38	3.01	1920 2040	2.88	1920 2040	0.47	0.69	1920 2040	0.38	0.70	1920 2040	+
2040	19.38	5.01	2040	2.79	2040	0.52	0.69	2040	0.43	0.69	2040	
2280	20.08	3.03	2280	2.58	2280	0.60	0.67	2280	0.52	0.67	2280	
2400	20.34		2400	2.50	2400	0.64	0.65	2400	0.56	0.65	2400	
2520	20.60	3.01	2520	2.41	2520	0.70	0.64	2520	0.61	0.65	2520	
2640	20.93		2640	2.35	2640	0.73	0.62	2640	0.67	0.63	2640	
2760	21.24	3.04	2760	2.27	2760	0.76	0.61	2760	0.72	0.62	2760	
2880	21.56		2880	2.21	2880	0.80	0.60	2880	0.79	0.61	2880	
3000 3120			3000 3120		3000 3120	+		3000 3120	-		3000 3120	
3240			3120		3120	+		3120	+		3120	
3360	1		3360	1	3360	1		3360	1		3360	1
3480		1	3480	1	3480	1	1	3480	1	1	3480	
3600			3600		3600			3600			3600	
3720			3720		3720			3720			3720	
3840			3840		3840			3840			3840	
3960	l		3960		3960	<u> </u>		3960			3960	ļ
4080			4080		4080	-		4080			4080	ļ
4200 4320			4200 4320	+	4200 4320	+		4200 4320		-	4200 4320	
		in):	7320	2000	4320	W/L	10.64	4520	W/L	10.66	4 520	W/L
	me pumped(m	<i>.</i>		2880		VV/L	10.04		₩₩/∟	10.66	<u> </u>	VV/L
Averag	e yield (l/s):			3.04								

		FORM 6 A		· · · · · · · · · · · · · · · · · · ·
RECORD OF EXISTING	EQUIPMENT AT E	BOREHOLE		
BOREHOLE NO:	BH 1	DATE:		
DISTRICT:	SPRINGBOK	CONTRAC	TOR:	AB PUMPS
VILLAGE/FARM:	KAMIEBEES			
LOCALITY	NORTHERN CA	\PE		
ITEM(S) PARAM	METERS	DESCRIPTION OF	EQUIPMENT	
TYPE OF INSTALLATIO	ON (Type of pum	p,eg, reciprocal cylinder,mono-ty	/pe,handpum	p)
Туре	RECIPROCAL	CYLINDER		
Name & model	WINDPUMP			
Depth installed (m)	21.5			
Element Diameter (m)	0.08			
Element stroke (m)	0.6			
	PI	PE COLUMNS & SHAFTS		
Diameter (mm)	40			
Length / section (m)	3			
No of sections	7			
Pipe material	GALVANISED S	STEEL		
Shaft diameter (mm)	16	-		
	Мото	RIZED PUMP INSTALLATION		
Туре				
Name model of motor				
motor power rating				
motor pulley diam				
Pump pulley diam				
HANDPUMP				
Name / model				
Wheel diam (m)	3			
Mast height (m)	7			
SOLAR PUMP				
No of panels				
Rating per panel				
ANCILLARY EQUIPMEN	Т			
Storage tank (It)		Type riser		
Stand height(m)		Class riser	HDPE	
Water meter name		Diameter of riser	40	
Water meter reading		Condition of riser	GOOD	
Type of reservoir		Pump rooms		
Reservoir size		Type of pump room		
Reservoir condition		Material of enclosure		
Stand height (m)		Condition of enclosure		
DE-ESTABLISHMENT F	ROM SITE TO W			


CALIBRATION TEST DATA PLOT


STEP DRAWDOWN TEST DATA PLOT


CONSTANT DISCHARGE TEST DATA PLOT



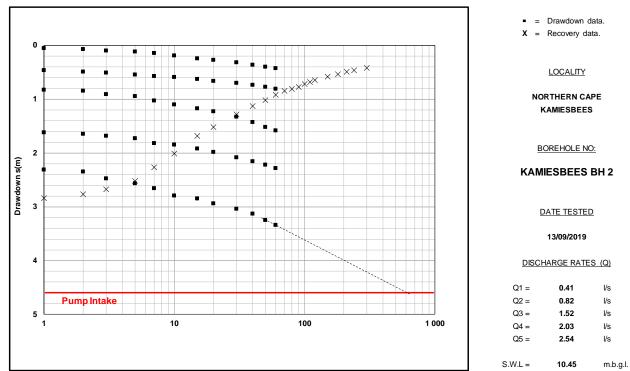
MONITORING BOREHOLE TEST DATA PLOT

MONITORING BOREHOLE TEST DATA PLOT

Telephone: 043-732 1 Fax no: 043-732 1422 Fax to e-mail: 0866 7' E mail: office@abpum	17 732		EC mbgl mbch magl L/S RPM S/W/L µS/cm	Abbreviations Electrical conductivity Meters below ground level Meters below casing height Meters above ground level Ures per second Rates per minute Static water level Microsiemens per centimeter LETEST REC	CORD	<u>•</u>		Ground water solution	AB PUMPS ons t/a AB Pumps CC
								PR0JECT #	P22339
								BBR	ABEL
CONSULTANT:	AARDBOOR								ISAAC
DISTRICT:	SPRINGBOK								KOLEN
PROVINCE:	NORTHERN CAP	ΡE						PRODUCTION BONUS:	ZANELE
FARM / VILLAGE NAME :	KAMIESBEES								
DATE TESTED:	13/09/2019							EC meter number	
MAP REFERENCE:									
CO-ORDINATES:				_			_	_	
FORMAT ON GPS:	hddd	°mm	SS.S	"		hddd	°mm.mmm		hddd.ddddd
		•	1				0		S 30.03738
		•		"	OR		0	OR	E 18.47659
LONGITUDE					-			_	
BOREHOLE NO: TRANSMISSIVITY VALUE:	KAMIESBEES	S BH 2			-				
TYPE INSTALLATION:	WINDMILL				-				
BOREHOLE DEPTH: (mbgl)	17.25				-				
					-				
COMMENTS: THE OWN	IER OF THE FARM	REMOVED	THE EXISTIN	G PUMP HIMSELF					
SAMPLE INSTRUCTIONS :									
Water sample taken	Yes	No		Test for:		macro	bacterio-logical	DATA CAPTURED BY:	ELZAAN
Date sample taken	16/09/20	19	If co	nsultant took sample, give	name:			DATA CHECKED BY:	
Time sample taken	07H00								AVN
CONSULTANT GUIDELINES	1								AVN
BOREHOLE DEPTH:	m	ст			1		1	1	AVN
BLOW YIELD:		31	P 1:		l/s	WATER STRIKE 1:			AVN
	m		EP 1: EP 2:		l/s l/s	WATER STRIKE 1: WATER STRIKE 2:			
STATIC WATER LEVEL:	m m	STE							m
STATIC WATER LEVEL: PUMP INSTALLATION DEPTH:		STE	P 2:		l/s	WATER STRIKE 2:			m
PUMP INSTALLATION DEPTH: RECOVERY:	m	STE STE STE	EP 2: EP 3:		l/s l/s	WATER STRIKE 2: WATER STRIKE 3: COMMENTS:			m
PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS:	m m h	STE STE STE STE	EP 2: EP 3: EP 4: EP 5: EP 6:		Vs Vs Vs Vs Vs	WATER STRIKE 2: WATER STRIKE 3: COMMENTS:	NERS PHONE : (NAME &	TEL)	m
PUMP INSTALLATION DEPTH: RECOVERY:	m	STE STE STE STE	EP 2: EP 3: EP 4: EP 5:		Vs Vs Vs Vs	WATER STRIKE 2: WATER STRIKE 3: COMMENTS:	SERS PHONE : (NAME &	TEL)	m
PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS:	m m h	STE STE STE STE	EP 2: EP 3: EP 4: EP 5: EP 6:		Vs Vs Vs Vs Vs	WATER STRIKE 2: WATER STRIKE 3: COMMENTS:	HERS PHONE : (NAME &	TEL)	m
PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT:	m m h	STE STE STE STE STEP DU	EP 2: EP 3: EP 4: EP 5: EP 6: JRATION:	BOREHOLE DEPTH AFTER T	Vs Vs Vs Vs Vs min	WATER STRIKE 2: WATER STRIKE 3: COMMENTS:	HERS PHONE : (NAME &	UNIT	m m m 41725
PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT: DESCRIPTION: STRAIGHTNESS TEST: VERTICALLY TEST:	m m h	STE STE STE STE STEP DI UNIT NO NO	EP 2: EP 3: EP 4: EP 5: EP 6: JRATION: QTY 0 0	BOREHOLE WATER LEVEL	Vs Vs Vs Vs Vs min EST:	WATER STRIKE 2: WATER STRIKE 3: COMMENTS: TELEPHONE NUME	VERS PHONE : (NAME &	UNIT M M	m m m 2011 01725 10.59
PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT: DESCRIPTION; STRAIGHTNESS TEST: VERTICALLY TEST: CASING DETECTION:	m m h	STE STE STE STEP DI UNIT NO NO	EP 2: EP 3: EP 4: EP 5: EP 6: JRATION: QTY 0 0 RUST	BOREHOLE WATER LEVEL A	Vs Vs Vs Vs Vs Vs EST: STER TEST: O?	WATER STRIKE 2: WATER STRIKE 3: COMMENTS: TELEPHONE NUME	ERS PHONE : (NAME &	UNIT M M YES/NO	m m m 0.59 0
PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT: DESCRIPTION: STRAIGHTNESS TEST: VERTICALLY TEST: CASING DETECTION: SUPPLIED NEW STEEL BOREHOLE	m m h	STE STE STE STE UNIT NO NO NO	EP 2: EP 3: EP 4: EP 5: EP 6: URATION: 0 0 RUST 0 0	BOREHOLE WATER LEVEL A SAND/GRAVEL/SILT PUMPEI DATA REPORTING AND REC	Vs Vs Vs Vs Vs Vs EST: STER TEST: O?	WATER STRIKE 2: WATER STRIKE 3: COMMENTS: TELEPHONE NUME	SERS PHONE : (NAME &	UNIT M YES/NO NO	m m m 17.25 0 1
PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT: DESCRIPTION: STRAIGHTNESS TEST: VERTICALLY TEST: CASING DETECTION: SUPPLIED NEW STEEL BOREHOLE BOREHOLE MARKING	m m h	STE STE STE STE STE STE STE NO NO NO NO	EP 2: EP 3: EP 4: EP 5: EP 6: IRATION: QTY 0 0 RUST 0 0 0 0	BOREHOLE WATER LEVEL A SAND/GRAVEL/SILT PUMPEI DATA REPORTING AND REC SLUG TEST:	Vs Vs Vs Vs Vs Vs EST: STER TEST: O?	WATER STRIKE 2: WATER STRIKE 3: COMMENTS: TELEPHONE NUME	BERS PHONE : (NAME &	UNIT M M YES/NO NO NO	m m m 772 17.25 10.59 0 1 1 0
PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT: DESCRIPTION: STRAIGHTNESS TEST: VERTICALLY TEST: CASING DETECTION: SUPPLIED NEW STEEL BOREHOLE BOREHOLE MARKING SITE CLEANING & FNISHING	m h h COVER:	STE STE STE STEP DI UNIT NO NO NO NO NO	EP 2: EP 3: EP 4: EP 5: EP 6: JRATION: QTY 0 0 RUST 0 0 1	BOREHOLE WATER LEVEL A SAND/GRAVEL/SLT PUMPEI DATA REPORTING AND REC SLUG TEST: LAYFLAT (M):	Vs Vs Vs Vs Vs Vs EST: STER TEST: O?	WATER STRIKE 2: WATER STRIKE 3: COMMENTS: TELEPHONE NUME	SERS PHONE : (NAME &	UNIT M M YES/NO NO NO M	m m m 7725 10.59 0 1 1 0 50
PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT: DESCRIPTION: STRAIGHTNESS TEST: VERTICALLY TEST: CASING DETECTION: SUPPLIED NEW STEEL BOREHOLE BOREHOLE MARKING SITE CLEANING & FINISHING LOGGERS FOR WATERLEVEL MON	m h h h	STE STE STE STE STEP DI UNIT NO NO NO NO NO NO	P 2: P 3: P 4: P 5: P 6: JRATION: QTY 0 0 RUST 0 0 1 1	BOREHOLE WATER LEVEL / SAND/GRAVEL/SILT PUMPEI DATA REPORTING AND REC SLUG TEST: LAYFLAT (M): LOGGERS FOR pH AND EC:	Vs Vs Vs Vs Vs TVs Tris FTER TEST: D? ORDING	WATER STRIKE 2: WATER STRIKE 3: COMMENTS: TELEPHONE NUME	HERS PHONE : (NAME &	UNIT M M YES/NO NO NO	m m m 772 17.25 10.59 0 1 1 0
PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT: DESCRIPTION: STRAIGHTNESS TEST: VERTICALLY TEST: CASING DETECTION: SUPPLIED NEW STEEL BOREHOLE BOREHOLE MARKING SITE CLEANING & FNISHING	m h h h	STE STE STE STE STEP DI UNIT NO NO NO NO NO NO	P 2: P 3: P 4: P 5: P 6: JRATION: QTY 0 0 RUST 0 0 1 1	BOREHOLE WATER LEVEL / SAND/GRAVEL/SILT PUMPEI DATA REPORTING AND REC SLUG TEST: LAYFLAT (M): LOGGERS FOR pH AND EC:	Vs Vs Vs Vs Vs TVs Tris FTER TEST: D? ORDING	WATER STRIKE 2: WATER STRIKE 3: COMMENTS: TELEPHONE NUME	NERS PHONE : (NAME &	UNIT M M YES/NO NO NO M	m m m 7725 10.59 0 1 1 0 50
PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT: DESCRIPTION; STRAIGHTNESS TEST: VERTICALLY TEST: CASING DETECTION: SUPPLIED NEW STEEL BOREHOLE BOREHOLE MARKING SITE CLEANING & FNISHING LOGGERS FOR WATERLEVEL MON It is hereby acknowledged that u	m m h h cover:	STE STE STE STE STEP DI UNIT NO NO NO NO NO NO	P 2: P 3: P 4: P 5: P 6: JRATION: QTY 0 0 RUST 0 0 1 1	BOREHOLE WATER LEVEL / SAND/GRAVEL/SILT PUMPEI DATA REPORTING AND REC SLUG TEST: LAYFLAT (M): LOGGERS FOR pH AND EC: nent is in an acceptable co	Vs Vs Vs Vs Vs Mreation Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs	WATER STRIKE 2: WATER STRIKE 3: COMMENTS: TELEPHONE NUME (mbch)		UNIT M M YES/NO NO NO M	m m m 7725 10.59 0 1 1 0 50
PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT: DESCRIPTION: STRAIGHTNESS TEST: VERTICALLY TEST: CASING DETECTION: SUPPLIED NEW STEEL BOREHOLE BOREHOLE MARKING SITE CLEANING & FINISHING LOGGERS FOR WATERLEVEL MON	m h h h COVER:	STE STE STE STE STEP DI UNIT NO NO NO NO NO NO	P 2: P 3: P 4: P 5: P 6: JRATION: QTY 0 0 RUST 0 0 1 1	BOREHOLE WATER LEVEL / SAND/GRAVEL/SILT PUMPEI DATA REPORTING AND REC SLUG TEST: LAYFLAT (M): LOGGERS FOR pH AND EC: nent is in an acceptable co	Vs Vs Vs Vs Vs Vs MrERTEST: D? ORDING	WATER STRIKE 2: WATER STRIKE 3: COMMENTS: TELEPHONE NUME		UNIT M M YES/NO NO NO M	m m m 0 1 0 50

				HOLE TEST CO				
Desident and				water Solution		125		
Borehole numb	ber:	KAMIESB		Old / Alternativ	ve number:			
Contractor:		AB PL		Supervisor:			ABEL	
Operator:		KOI	EN	Rig number &	Type rig:		27	
			EXISTING	EQUIPMENT	•			
Type pump	Depth	Condition	Drive unit	Condition	Pump house	Condition	R	emarks
			TESTING I					
Pump type		Depth installe	ed (m)	Date & time (started)	Date & time (com	pleted)	
WA 2	22-2	15	10	13/09/20	19 10H20	1	3/09/2019 20+	120
		MULI	I-RATE OR S	STEPTEST DE	TAILS			
STI	EP	DURATI	ON (MIN)	RECOVE	ERY (MIN)	YIELD ((L/S)	DRAWDOWN (m
1		6	0			0.41	l/s	0.43
2		6	0			0.82	l/s	0.81
3		6	0			1.52	l/s	1.58
4		6	0			2.03	l/s	2.25
5		6	0	3	00	2.54	l/s	3.34
6							l/s	
7							l/s	
8							l/s	
Calibration:							l/s	
TOTAL:		30	00	3	00		l/s	
COMMENT:								
				DISCHARGE				
Pump type		Depth installe	. ,	Date & time (r í	Date & time (com	i í	
WA 2	22-2	15 Drowdown (m		14/09/2019	07H40	18/09/2019	07H40	
		Drawdown (n	1	Duration (min	,	Recovery (min)		
1.0		2.	-		380		2880	
Total: (Multi-rat	e and Consta	nt Discharge rat	e)	31	180		3180	
Work time: List of parts rep	placed or repa	hour aired:	Transport exis	sting equipm.	Km	Travelling (To fix);		Km
		Borehole nur	nber	Duration (min	n) CONSTANT	Drawdown (m)	Hand/logger	Distance (m)
Observation Ho	nle 1	BH			380	· · ·	HAND	9.
Observation Ho		BH			380		HAND	180
Observation Ho				20		0.40		(
Observation Ho								
Observation Ho								
Observation			GEN	IERAL				
ESTABLISHMI	ENT	From:		SKROON	To:			
Site Move		From project#		To #:	P22339	Travelling km:		162
		Village	Borehole no	Village		-		
1		- J -		villaye	Borehole no	-		
		KAMIESKRO ON	KK-MUN- SKOOL 2	<u> </u>	KAMIESBEE S BH 2			
Maintenance:		KAMIESKRO	KK-MUN-	KAMIESBEE	KAMIESBEE	Travelling km		
Maintenance: After test meas	surements	KAMIESKRO ON	KK-MUN-	KAMIESBEE S Parts repaired/	KAMIESBEE S BH 2	Travelling km Casing depth m	RUST	
After test meas		KAMIESKRO ON Work time hr	KK-MUN- SKOOL 2 10.59	KAMIESBEE S Parts repaired/ replaced	KAMIESBEE S BH 2 17.25		RUST	
After test meas Water level bef	fore installing	KAMIESKRO ON Work time hr Water level test pump: (mbc	KK-MUN- SKOOL 2 10.59	KAMIESBEE S Parts repaired/ replaced Borehole depth	KAMIESBEE S BH 2 17.25		RUST	
After test meas	fore installing t nstalling test p	KAMIESKRO ON Work time hr Water level test pump: (mbc	KK-MUN- SKOOL 2 10.59	KAMIESBEE S Parts repaired/ replaced Borehole depth 10.15	KAMIESBEE S BH 2 17.25		RUST	
After test meas Water level bef Depth before ir Testpump Insta	fore installing t nstalling test p alled	KAMIESKRO ON Work time hr Water level test pump: (mbc ump: Once /Twice /	KK-MUN- SKOOL 2 10.59	KAMESBEE S Parts repaired/ replaced Borehole depth 10.15 17.25 Reason:	KAMIESBEE S BH 2 17.25		RUST	
After test meas Water level bef Depth before ir Testpump Insta Installed Testpu	fore installing t nstalling test p alled ump	KAMIESKRO ON Work time hr Water level test pump: (mbc ump: Once /Twice / <10 l/s / >1	KK-MUN- SKOOL 2 10.59 h) More Ols/s	KAMIESBEE S Parts repaired/ replaced Borehole depth 10.15 17.25 Reason: Reason:	KAMIESBEE S BH 2 17.25	Casing depth m	RUST	
After test meas Water level bef Depth before ir Testpump Insta Installed Testpu Was existing e	fore installing t nstalling test p alled ump quipment re-in	KAMIESKRO ON Work time hr Water level test pump: (mbc ump: Once /Twice / <10 l/s / >1	KK-MUN- SKOOL 2 10.59 h) More	KAMESBEE S Parts repaired/ replaced Borehole depth 10.15 17.25 Reason:	KAMIESBEE S BH 2 17.25	Casing depth m	RUST	
After test meas Water level bef Depth before ir Testpump Insta Installed Testpu Was existing e GPS Unit numb	fore installing t nstalling test p alled ump quipment re-iu poer:	KAMIESKRO ON Work time hr Water level test pump: (mbc ump: Once /Twice / <10 l/s / >1	KK-MUN- SKOOL 2 10.59 h) More Ols/s	KAMIESBEE S Parts repaired/ replaced Borehole depth 10.15 17.25 Reason: Reason: No:	KAMIESBEE S BH 2 17.25	Casing depth m	RUST	
After test meas Water level bef Depth before ir Testpump Insta Installed Testpu Was existing e	fore installing t nstalling test p alled ump quipment re-iu poer:	KAMIESKRO ON Work time hr Water level test pump: (mbc ump: Once /Twice / <10 l/s / >1	KK-MUN- SKOOL 2 10.59 h) More Ols/s	KAMIESBEE S Parts repaired/ replaced Borehole depth 10.15 17.25 Reason: Reason:	KAMIESBEE S BH 2 17.25	Casing depth m	RUST	

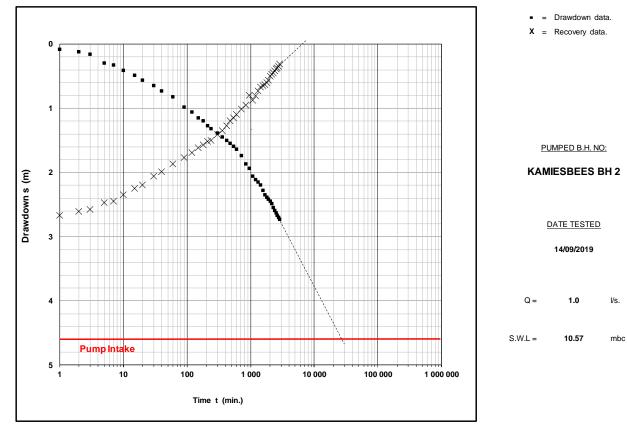
					CALIBRA	FO TION TEST	RM 5 I		,					
PROJ NO : BOREHOLE ALT BH NO:		RD SHEE P22339 MESBEI				0				PROVI DISTRI SITE N	CT:		SPRIN	HERN CAPE GBOK SBEES
ALT BH NO: BOREHOLE WATER LEV				17.25 10.45		VEL ABOVE EIGHT (mag		G (m):	0.29 0.28		NG PUMP: RACTOR:		0 AB PUI	MPS
DEPTH OF F	PUMP (m):			15.10		P INLET (mr			170.00	PUMP	TYPE:		WA 22-	-2
DISCHARGE			RPM	CALIBRAT	DISCHAR		VERY	RPM		DISCU	ARGE RAT	T 0	RPM	
	RAIEI		RPIVI			JE RAIE Z	1	KPIVI					KPIVI	
DATE:		TIME:	TIME		DATE:		TIME:			DATE:		TIME:		
TIME (MIN)	DRAW DOWN (M)	YIELD	(MIN)	RECOVERY (M)	(MIN)	DRAW DOWN (M)	YIELD	TIME (MIN)	RECOVERY (M)	TIME (MIN)	DRAW DOWN (N	YIELD	TIME (MIN)	RECOVERY (M)
1	20111(11)	(2,0)	1	(,	1	20111(,	(2,0)	1	(,	1	20111((2/0)	1	()
2			2		2			2		2			2	
3			3		3			3		3			3	
5			5		5			5		5			5	
7			7	1	7	1		7	1	7	1		7	1
10			10	1	10			10	1	10	1		10	
15		1	15		15			15		15		1	15	1
-			20					20		-			20	
		1	30					30		1	1	1	30	
			40					40					40	
		1	50				1	50	İ	1		1	50	
			60					60					60	
			70					70					70	
			80					80					80	
			90					90					90	
			100					100					100	
			110					110					110	
			120					120					120	
			150					150					150	
DISCHARGE	RATE 4		RPM		DISCHAR	GE RATE 5		RPM		DISCH	ARGE RAT	E6	RPM	
DATE:		TIME:			DATE:		TIME:			DATE:		TIME:		
TIME	DRAW	YIELD	TIME	RECOVERY	1	DRAW	YIELD	TIME	RECOVERY	1	DRAW	YIELD	TIME	RECOVERY
(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (M)		(MIN)	(M)	(MIN)	DOWN (N		(MIN)	(M)
1	- (/	(· - /	1		1	- ()	X · - /	1	()	1	- ((/	1	()
2			2		2			2		2			2	
3			3		3			3		3			3	
5			5		5			5		5			5	
7			7	1	7	1		7	1	7	1		7	1
10			10	1	10	1		10	1	10	1		10	1
15			15		15		1	15	1	15		1	15	1
-			20	1	·-	1		20	1	1	1		20	1
			30					30					30	
			40					40	1	1		1	40	1
			50					50					50	
			60					60		1			60	
	1		70				<u> </u>	70					70	
			80					80	1	1		1	80	1
			90			1		90	1	1	1		90	1
			100					100					100	
			110	1	1	ł		110			1		110	1
			120					120					120	
	+		150	1		1	<u> </u>	150	1		1		150	1
			130	1	1	1		130					130	
	+					1		+	1	1	1		+	†
COMMENTS	:	I	I	L	l	1	I	1	1	1	1	1	1	1
S/W/L: (mbcl														


ALT BH NO: 0 E 18.47659 SITE NAME: KAMESBES OBCREHOLE DEPTH (m) 17.25 DATUM LEVEL ABOVE CASING (m): 0.29 EXISTING PUMP: 0 WATER LEVEL (mbd): 10.45 CASING HEIGHT: (mag)I: 0.29 CONTRACTOR: AB PUMP SUBPLICATION AB PU	PROJ NO : BOREHOLE	NO	P22339		MAP REFER		<u>DLE TEST R</u> S 30.03738	2001.2	0	•			NORTH		APE
BORHENCE DEPTH (m) 17.25 DATUMICYEL ABOVE CASNS (m): 0.28 CONTING-TOW AB PUMPS DEPTH OF UNR (m): 15.10 DAMA PUMP INLET (mmg): 170.00 PUMP TYPE: MA2.22 DEPTH OF UNR (m): 15.10 DISCHARGE EXTE 1 RPM 320 DISCHARGE EXTE 1 RPM 320 DISCHARGE EXTE 1 RPM 420 DISCHARGE EXTE 1 RPM 320 DISCHARGE EXTE 1 RPM 420 DISCHARGE EXTE 1 RPM MIS DISCHARGE EXTE 1 RPM MIS DISCHARGE EXTE 1 RPM MIS DISCHARGE EXTE 1	ALT BH NO:	NO.	0										-		
MATHER LUC, (mb.g): 0.28 CONTRUCTOR 0.28 CONTRUCTOR No No <th></th> <th>DEPTH (m)</th> <th>0</th> <th>17.25</th> <th></th> <th>DATUMLE</th> <th>EVEL ABOVE</th> <th>CASING</th> <th>G (m):</th> <th>0.29</th> <th>EXISTI</th> <th>NG PUMP:</th> <th>0</th> <th></th> <th></th>		DEPTH (m)	0	17.25		DATUMLE	EVEL ABOVE	CASING	G (m):	0.29	EXISTI	NG PUMP:	0		
STEPPED DISCHARGE TEST & RECOVERY DischarGe RATE IMP 248 DischarGe RATE RPM 320 DISCHARGE RATE RPM 450 DATE 13092019 TME 10420 DATE 13092019 TME 12002019 TME 12002019 TME 12002019 TME 12420 TAME DATA T 1 0.46 1 1 0.43 1 1 100 DATA T 1 0.46 1 1 0.46 1 1 0.48 1 0.40 10.00 000000000000000000000000000000000000	WATER LEV	EL (mbdl):				CASING H	IEIGHT: (mag	JI):	()						
Discharkeige Avie 1 PPM 3.0.4 Discharkeige Avie 1 PPM 3.0.4 Discharkeige Avie 1 PPM 4.0.4 Second Avie 1 DATE 13.06.20119 TME 14.0.2 DATE 13.06.20119 TME 114.2.2 DATE 13.06.20119 TME 14.0.2.0 TME TME 14.0.2.0 TME T	DEPTH OF F	PUMP (m):		15.10				,			PUMP -	TYPE:	WA 22-	2	
DATE 13.08/2010 TME 14.09/2010 TME 14.14/20 DATE 13.09/2010 TME 14.20 DATE 13.09/2010 TME 14.00/2010 14.00/2010 14.00/2010 14.00/2010 14.00/2010 14.00/2010 14.00/2010 14.00/2010 14.00/2010 14.00/2010 14.20/2010								TEST &							150
TIME DRAW MELD TIME RECOVERY TIME DRAW MELD TIME DREW MUN MUN<	DISCHARGE	ERAIE 1		RPM	248	DISCHAR	GE RATE 2		RPM	320	DISCH	ARGERATE	3	RPM	456
DOWN LMI LSI MAN DOWN LMI LSI MAN DOWN LMI LSI MAN DOWN LMI LSI MAN MON MON <td></td> <td>r</td>															r
1 0.05 1 0.05 1 0.083 1 1 0.083 1 0.083 1 0.083 2 0.083 2 0.083 2 0.083 2 0.083 2 0.083 2 0.083 2 0.081 2 0.081 2 0.081 2 0.081 2 0.081 2 0.081 2 0.081 1 0.081 1 0.091 1.52 3 0.091 1.52 3 0.091 1.52 3 0.091 1.52 3 0.091 1.52 1.51 0.17 1.51 1.57 1.10 1 1.52 3 0.001 1.52															RECOVER
2 0.07 2 2 0.49 0.83 2 0.85 0.9 1.52 3 5 0.12 5 5 0.51 3 7 3 0.91 1.52 3 7 0.15 0.44 7 7 0.55 0.81 7 1.51 1.52 7 7 1.51 1.51 1.51 1 7 7 7 7 7 7 7 7 7 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52	(IVIIIN) 1		(L/3)	. ,		. ,		(L/3)	· · /	(10)	· /		(L/3)	(101111)	(10)
3 0.10 0.35 3 0.5 0.55 0.81 5 0.5 0.81 5 0.97 1.22 3 0.55 0.81 5 0.95 5 0.95 5 0.95 5 0.95 5 0.95 5 0.95 0.95 0.81 5 0.95 1.00 <	י ז							0.83	•		-			2	
5 0.12 5 0.55 0.81 5 0.85 0.81 5 0.95 0.81 7 0.33 1.64 7 0 0.15 0.44 7 7 0.57 7 7 7 1.03 1.64 7 15 0.25 0.43 15 15 0.59 0.41 10 1.03 1.64 7 15 0.25 0.43 15 15 0.66 0.82 0.8 1.02 1.23 20 0.20 1.23 1.53 3.0 160 0.32 0.42 30 0.74 0.86 40 40 1.43 40 40 160 0.33 60 60 0.77 50 50 1.58 60 1.58 60 60 1.58 60 60 1.58 60 60 1.50 1.59 1.50 1.50 1.59 1.50 1.50 1.50 1.50 1.50 <t< td=""><td></td><td></td><td>0.35</td><td></td><td></td><td></td><td></td><td>0.05</td><td></td><td></td><td></td><td></td><td>1 52</td><td></td><td></td></t<>			0.35					0.05					1 52		
7 0.15 0.44 7 0 7 10 10 10.5 0.57 7 10 10.5 15.4 7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 11.5 10.5 11.5 10.5 11.5 10.5 11.5 10.5 11.5 10.5 11.5 10.5 11.5 10.5 1	-		0.55					0.81	-				1.52		
10 0.19 0 10 <t< td=""><td><u> </u></td><td></td><td>0 4 4</td><td></td><td></td><td></td><td></td><td>0.01</td><td>7</td><td></td><td></td><td></td><td>1 54</td><td></td><td></td></t<>	<u> </u>		0 4 4					0.01	7				1 54		
15 0.25 0.43 15 15 15 15 1.77 1.51 15 1.77 1.51 15 20 20 0.26 0.27 20 20 0.66 0.82 20	10		0.44					0.84	10		-		1.04	-	
20 0.27 20 0.42 30 30 0.70 30 20 1.23 1.53 30 30 0.32 0.42 30 30 0.70 85 0 1.33 1.53 30 50 0.40 0.41 50 0.77 650 50 1.52 1.52 50 50 0.43 60 60 0.81 0.82 60 50 1.52 1.52 60 50 0.43 60 70 70 70 70 70 70 70 70 60 100 0.81 0.82 60 80 1.52 1.52 1.50 60 80 0.43 60 70 70 70 70 70 70 70 70 70 100 100 100 100 100 100 100 100 100 100 100 120 110 110 110 110 110 110 110 110 120 120 111 120 120 120 120 120 120 120 120 120 120 1120 120			0.43					5.54					1.51		
30 0.32 0.42 30 1.33 1.53 30 1.53 1.53 30 00 0.36 40 40 0.74 0.85 40 40 1.43 40 050 0.40 0.41 50 50 0.77 50 50 1.52 1.52 60 50 0.43 60 60 0.81 0.82 60 60 1.52 1.52 60 60 0.41 70 </td <td></td> <td></td> <td>5.40</td> <td></td> <td></td> <td></td> <td></td> <td>0.82</td> <td></td> <td></td> <td></td> <td></td> <td>1.01</td> <td></td> <td></td>			5.40					0.82					1.01		
No 0.36 40 40 0.74 0.85 40 40 1.43 40 50 0.40 0.41 50 50 0.77 50 50 1.52 1.52 50 70 1 70 70 70 70 70 70 70 70 70 70 80 80 80 80 80 80 80 80 80 80 80 80 90 90 90 90 90 90 90 100 100 100 100 100 110 110 110 110 110 110 110 110 120 120 111 120 120 120 120 120 120 120 120 111 120 120 120 120 120 120 120 120 111 120 120 120 120 120 120 120 120 112 120 120 120 120 120 120 120 120 1110 120 120 120 120 120 120 120 120 120			0.42					5.52					1.53		1
S0 0.40 0.41 S0 S0 0.77 S0 S0 1.52 1.52 1.50 60 0.43 60 60 0.81 0.82 60 50 1.52 60 70 70 70 70 70 70 70 70 70 70 80 90 90 90 90 90 90 90 90 90 90 90 90 100 100 100 100 100 100 100 90 90 110 110 110 110 110 110 110 110 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 121 120 120 120 120 120 121 120 120 120 120 120 121 <td></td> <td></td> <td>3.72</td> <td></td> <td></td> <td></td> <td></td> <td>0.85</td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td>1</td>			3.72					0.85							1
B0 0.43 60 60 0.81 0.82 60 60 1.58 60 70 70 70 70 70 70 70 70 70 70 80			0.41						-				1.52		1
70 80 80								0.82							İ
B0 Image: B0 B0	70			70		70			70		70			70	
B0 90 100 <				80					80					80	
10010														90	
110 120 120 150 120 120 120 120 120 120 150														100	
120120120120120120120120120120pH150PH150PH150PH150PH150150150TEMP°C180TEMP°C180TEMP°C180TEMP°C1807CC2.52MS/cm210EC2.44MS/cm210EC2.51MS/cm210TEC2.51MS/cm210TEC2.51MS/cm210TEC2.51MS/cm210TEC2.51MS/cm210TEC2.51MS/cm210TEC7C180200TEC7C1807C1807C														110	
TEMP°C180?C180 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>															
TEMP°C180?C180 </td <td></td> <td></td> <td></td> <td>150</td> <td></td> <td>Ηα</td> <td></td> <td></td> <td>150</td> <td></td> <td>На</td> <td></td> <td></td> <td>150</td> <td></td>				150		Ηα			150		На			150	
DISCHARGE RATE 4 RPM 583 DISCHARGE RATE 5 RPM DISCHARGE RATE 6 RPM DATE: 13/09/2019 TIME: 13H20 DATE: 13/09/2019 TIME: 14H20 DATE: TIME:			°C			•		°C					°C		
DATE: 13/09/2019 TIME: 13/12 DATE: 13/09/2019 TIME: 14H2 DATE: TIME: TIME DRAW YIELD TIME RECOVERY TIME DRAW YIELD TIME TIME TIME TIME TIME TIME TIME TIME <td< td=""><td></td><td>2.52</td><td></td><td></td><td></td><td></td><td>2.44</td><td>MS/cm</td><td></td><td></td><td></td><td>2.51</td><td>MS/cm</td><td>210</td><td></td></td<>		2.52					2.44	MS/cm				2.51	MS/cm	210	
DRAW YIELD TIME RECOVERY TIME DRAW YIELD TIME RECOVERY TIME DRAW YIELD TIME DRAW YIELD TIME DRAW YIELD TIME DRAW YIELD TIME RECOVERY YIELD YIELD TIME RECOVERY YIELD TIME RECOVERY YIELD YIELD TIME	DISCHARGE	ERATE 4		RPM	583	DISCHAR	GE RATE 5		RPM		DISCH	ARGE RATE	6	RPM	
DOWN (M) L/LS MIN MO MIN DOWN (M) L/LS MIN	DATE:	13/09/2019	TIME:	13H20		DATE:	13/09/2019	TIME:	14H20		DATE:		TIME:		
1 1.62 1 1 2.31 1 2.84 1 1 1 2 1.65 1.98 2 2 2.35 2 2.77 2 2 2 3 1.68 3 3 2.48 2.53 3 2.68 3 3 3 5 1.73 2.01 5 5 2.57 5 2.52 5 5 5 7 1.82 7 7 2.66 2.53 7 2.27 7 7 7 10 1.85 2.02 10 10 2.79 10 2.01 10 10 10 15 1.92 15 15 2.85 2.50 15 1.68 15 15 15 20 1.98 2.04 20 2.04 20 1.22 20 2	TIME	DRAW	YIELD	TIME	RECOVERY	TIME	DRAW	YIELD	TIME	RECOVERY	TIME	DRAW	YIELD	TIME	RECOVER
2 1.65 1.98 2 2 2.35 2 2.77 2 2 2 3 1.68 3 3 2.48 2.53 3 2.68 3 3 3 5 1.73 2.01 5 5 2.57 5 2.52 5 5 5 7 1.82 7 7 2.66 2.53 7 2.27 7 7 7 10 1.85 2.02 10 10 2.79 10 2.01 10 10 10 15 1.92 15 15 2.85 2.50 15 1.68 15 15 20 30 2.08 30	(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (M)	(L/S)	(MIN)	(M)
3 1.68 3 3 2.48 2.53 3 2.68 3 3 3 5 1.73 2.01 5 5 2.57 5 2.52 5 5 5 7 1.82 7 7 2.66 2.53 7 2.27 7 7 7 10 1.85 2.02 10 10 2.79 10 2.01 10 10 10 15 1.92 15 15 2.85 2.50 15 1.68 15 15 15 20 1.98 2.04 20 20 2.94 20 1.52 20 20 20 30 2.08 30 30 3.04 2.51 30 1.28 30 30 30 40 2.16 2.05 40 40 3.13 40 1.13 40 40 40 50 2.22 50 50 3.25 2.54 50 1.02 50 50 60 2.28	1	1.62		1		1	2.31		1	2.84	1			1	
5 1.73 2.01 5 2.57 5 2.52 5 5 7 1.82 7 7 2.66 2.53 7 2.27 7 7 7 10 1.85 2.02 10 10 2.79 10 2.01 10 10 10 15 1.92 15 15 2.85 2.50 15 1.68 15 15 15 20 1.98 2.04 20 20 2.94 20 1.52 20 20 20 30 2.08 30 30 3.04 2.51 30 1.28 30 30 30 40 2.16 2.05 40 40 3.13 40 1.13 40 40 40 50 2.22 50 50 3.25 2.54 50 1.02 50 50 50 60 2.28 2.03 60 60 3.34 60 0.85 70 70 70 70 70 70	2	1.65	1.98	2		2	2.35		2	2.77	2			2	
7 1.82 7 7 2.66 2.53 7 2.27 7 7 7 7 10 10 1.85 2.02 10 10 2.79 10 2.01 10 10 10 15 1.92 15 15 15 2.85 2.50 15 1.68 15 15 15 20 1.98 2.04 20 2.94 20 1.52 20 20 20 30 2.08 30 30 30.0 3.04 2.51 30 1.28 30 30 30 400 2.16 2.05 40 40 3.13 40 1.13 40 40 40 50 2.22 50 50 3.25 2.54 50 1.02 50 50 50 60 2.28 2.03 60 60 3.34 60 0.92 60 60 60 70 70 70 70 70 0.85 70 70 70	3	1.68		3		3	2.48	2.53	3	2.68	3			3	
10 1.85 2.02 10 10 2.79 10 2.01 10 10 10 15 1.92 15 15 2.85 2.50 15 1.68 15 15 20 20 1.98 2.04 20 20 2.94 20 1.52 20 20 20 30 2.08 30 30 3.04 2.51 30 1.28 30 30 30 40 2.16 2.05 40 40 3.13 40 1.13 40 40 50 2.22 50 50 3.25 2.54 50 1.02 50 50 50 60 2.28 2.03 60 60 3.34 60 0.92 60 60 60 70 70 70 70 0.85 70 70 70 80 80 80 80 80 80 80	5	1.73	2.01				2.57		5	2.52					
15 1.92 15 15 2.85 2.50 15 1.68 15 15 20 1.98 2.04 20 2.94 20 1.52 20 20								2.53							
201.982.0420202.94201.52202020302.0830303.042.51301.28303.34303030303030303030303030303030303030 <td< td=""><td></td><td>1 05</td><td>2.02</td><td></td><td> </td><td></td><td>2.79</td><td></td><td>10</td><td>2.01</td><td>10</td><td></td><td></td><td>10</td><td> </td></td<>		1 05	2.02				2.79		10	2.01	10			10	
30 2.08 30 30 30.4 2.51 30 1.28 30 30 30 40 2.16 2.05 40 40 3.13 40 1.13 40 40 40 50 2.22 50 50 50 3.25 2.54 50 1.02 50 50 50 50 60 2.28 2.03 60 60 3.34 60 0.92 60 60 60 70 70 70 70 70 0.85 70 60 70 70 80 1.02 90 0.91 70 80 80 80 80 80 80 80 80 80 80 80 80 80 80 90	7 10	C0.1	1				2.85	2.50		1.68					
40 2.16 2.05 40 40 3.13 40 1.13 40 40 40 50 2.22 50 50 50 3.25 2.54 50 1.02 50 50 50 50 60 2.28 2.03 60 60 3.34 60 0.92 60 60 60 70	7 10 15			1	1					1.52					
50 2.22 50 50 3.25 2.54 50 1.02 50 50 50 50 60 2.28 2.03 60 60 3.34 60 0.92 60 60 60 70 <t< td=""><td>7 10 15 20</td><td>1.92 1.98</td><td>2.04</td><td></td><td></td><td></td><td></td><td></td><td>20</td><td>1.28</td><td>30</td><td></td><td> </td><td></td><td></td></t<>	7 10 15 20	1.92 1.98	2.04						20	1.28	30				
60 2.28 2.03 60 60 3.34 60 0.92 60 60 60 70 70 70 70 70 70 70 80 70	7 10 15 20 30	1.92 1.98		30			3.04	2.51						40	
70 70	7 10 15 20 30 40	1.92 1.98 2.08 2.16		30 40		40	3.13		40	1.13					1
80 80	7 10 15 20 30 40 50	1.92 1.98 2.08 2.16 2.22	2.05	30 40 50		40 50	3.13 3.25		40 50	1.13 1.02	50			50	
90 90 90 90 90 0.77 90 90 90 100 100 100 100 100 0.72 100 100 100 110 110 110 110 110 0.68 110 110 110 120 120 120 120 0.65 120 120 120 pH 150 pH 150 0.58 pH 150 150 TEMP °C 180 TEMP °C 180 0.54 TEMP °C 180 EC 2.67 MS/m 210 EC 2.71 MS/m 210 0.49 EC µS/m 210	7 10 15 20 30 40 50 60	1.92 1.98 2.08 2.16 2.22	2.05	30 40 50 60		40 50 60	3.13 3.25		40 50 60	1.13 1.02 0.92	50 60			50 60	
100 100 100 0.72 100 100 100 110 110 110 110 110 0.68 110 110 110 120 120 120 120 120 120 120 120 120 120 pH 150 pH 150 0.58 pH 150 150 TEMP °C 180 TEMP °C 180 0.54 TEMP °C 180 EC 2.67 MS/m 210 EC 2.71 MS/m 210 0.49 EC µS/m 210	7 10 15 20 30 40 50 60 70	1.92 1.98 2.08 2.16 2.22	2.05	30 40 50 60 70		40 50 60 70	3.13 3.25		40 50 60 70	1.13 1.02 0.92 0.85	50 60 70			50 60 70	
110 110 110 110 0.68 110 110 110 120 120 120 120 120 0.65 120 120 120 pH 150 pH 150 pH 150 150 150 150 TEMP °C 180 TEMP °C 180 0.54 TEMP °C 180 EC 2.67 MS/m 210 EC 2.71 MS/m 210 0.49 EC µS/m 210	7 10 15 20 30 40 50 60 70 80	1.92 1.98 2.08 2.16 2.22	2.05	30 40 50 60 70 80		40 50 60 70 80	3.13 3.25		40 50 60 70 80	1.13 1.02 0.92 0.85 0.81	50 60 70 80			50 60 70 80	
120 120 120 120 0.65 120 120 120 pH 150 pH pH 150 0.58 pH 150 150 rEMP °C 180 TEMP °C 180 0.54 TEMP °C 180 EC 2.67 MS/m 210 EC 2.71 MS/m 210 0.49 EC µS/m 210	7 10 15 20 30 40 50 60 70 80 90	1.92 1.98 2.08 2.16 2.22	2.05	30 40 50 60 70 80 90		40 50 60 70 80 90	3.13 3.25		40 50 60 70 80 90	1.13 1.02 0.92 0.85 0.81 0.77	50 60 70 80 90			50 60 70 80 90	
pH ISO pH ISO 0.58 pH ISO 150 TEMP °C 180 TEMP °C 180 °C °C 180 °C	7 10 15 20 30 40 50 50 60 70 80 90 100	1.92 1.98 2.08 2.16 2.22	2.05	30 40 50 60 70 80 90 100		40 50 60 70 80 90 100	3.13 3.25		40 50 60 70 80 90 100	1.13 1.02 0.92 0.85 0.81 0.77 0.72	50 60 70 80 90 100			50 60 70 80 90 100	
TEMP °C 180 TEMP °C 180 0.54 TEMP °C 180 EC 2.67 MS/cm 210 EC 2.71 MS/cm 210 0.49 EC μS/cm 210	7 10 15 20 30 40 50 50 60 70 30 30 90 100 110	1.92 1.98 2.08 2.16 2.22	2.05	30 40 50 60 70 80 90 100 110		40 50 60 70 80 90 100 110	3.13 3.25		40 50 60 70 80 90 100 110	1.13 1.02 0.92 0.85 0.81 0.77 0.72 0.68	50 60 70 80 90 100 110			50 60 70 80 90 100 110	
EC 2.67 MS/cm 210 EC 2.71 MS/cm 210 0.49 EC μS/cm 210 210	7 10 15 20 30 50 50 50 50 50 50 50 50 50 5	1.92 1.98 2.08 2.16 2.22	2.05	30 40 50 60 70 80 90 100 110 120		40 50 60 70 80 90 100 110 120	3.13 3.25		40 50 60 70 80 90 100 110 120	1.13 1.02 0.92 0.85 0.81 0.77 0.72 0.68 0.65	50 60 70 80 90 100 110 120			50 60 70 80 90 100 110 120	
	7 10 15 20 30 50 50 60 70 80 90 100 110 120 pH	1.92 1.98 2.08 2.16 2.22	2.05	30 40 50 60 70 80 90 110 120 150		40 50 60 70 80 90 100 110 120 pH	3.13 3.25	2.54	40 50 60 70 80 90 100 110 120 150	1.13 1.02 0.92 0.85 0.81 0.77 0.72 0.68 0.65 0.58	50 60 70 80 90 100 110 120 pH			50 60 70 80 90 100 110 120 150	
240 240 240 240	7 10 15 20 20 30 40 50 50 60 60 70 80 90 100 110 120 50 H TEMP	1.92 1.98 2.08 2.16 2.22 2.28	2.05 2.03	30 40 50 60 70 80 90 100 110 120 150 180		40 50 60 70 80 90 100 110 120 pH TEMP	3.13 3.25 3.34	2.54	40 50 60 70 80 90 100 110 120 150 180	1.13 1.02 0.92 0.85 0.81 0.77 0.72 0.68 0.65 0.58 0.54	50 60 70 80 90 100 110 120 pH TEMP		1	50 60 70 80 90 100 110 120 150 180	
	7 10 15 20 30 40 50 50 60 60 80 90 100 110 120 pH TEMP	1.92 1.98 2.08 2.16 2.22 2.28	2.05 2.03	30 40 50 60 70 80 90 100 110 120 150 180 210		40 50 60 70 80 90 100 110 120 pH TEMP	3.13 3.25 3.34	2.54	40 50 60 70 80 90 100 110 120 150 180 210	1.13 1.02 0.92 0.85 0.81 0.77 0.72 0.68 0.65 0.58 0.54 0.49	50 60 70 80 90 100 110 120 pH TEMP		1	50 60 70 80 90 100 110 120 150 180 210	
300 300 0.42 300 360 360 360 360 360	7 10 15 20 30 40 50 50 60 60 80 90 100 110 120 pH TEMP	1.92 1.98 2.08 2.16 2.22 2.28	2.05 2.03	30 40 50 60 70 80 90 100 110 120 150 180 210 240		40 50 60 70 80 90 100 110 120 pH TEMP	3.13 3.25 3.34	2.54	40 50 60 70 80 90 100 110 120 150 180 210 240	1.13 1.02 0.92 0.85 0.81 0.77 0.72 0.68 0.65 0.58 0.54 0.49 0.46	50 60 70 80 90 100 110 120 pH TEMP		1	50 60 70 80 90 100 110 120 150 180 210 240	

					NT DISC	FORM 5 CHARGE TH TEST REC	EST & RE							
PROJ N BOREH ALT BH ALT BH	OLE NO: NO:	P22339 KAMIES 0 0	BEES BH 2	MAP REFER	ENCE:	S 30.03738 E 18.47659			PROVINCE DISTRICT: SITE NAME		NORTHERN CAPE SPRINGBOK KAMIESBEES			
WATER	OLE DEPTH: LEVEL (mbdl) OF PUMP (m):		,	DATUMLEV CASING HE DIAM PUMP	IGHT: (m	nagl):	n):	0.29 0.28 170	EXISTING I CONTRAC PUMP TYP	TOR:	0 AB PUMPS WA 22-2			
CONST	ANT DISCHAR	GE TEST 8	RECOVERY	′										
TEST S	TARTED			TEST COMP	LETED	1						1		
DATE:	14/09/2019	TIME:	07h40		DATE:		TIME:		TYPE OF P	UMP:		WA 22-2		
					OBSER	VATION HOL	E 1	OBSERV	ATION HOL	E 2	OBSER	VATION HOLE 3		
					NR:	BH 3		NR:	BH 1		NR:			
	DISCHARGE B	OREHOLE			Distanc	e(m);	9.1	Distance	(m);	180	Distand	ce(m);		
	DRAW	YIELD	TIME	RECOVERY	TIME:	Drawdown		TIME:	Drawdown	Recovery	TIME:	Drawdown		
· /	DOWN (M)	(L/S)	MIN	(M)	(min)	m	(m)	(min)	(m)		(min) 1	(m)		
1 2	0.08		1	2.67 2.61	1 2	0.07	2.65 2.50	1 2			1 2	+		
3	0.12	0.89	3	2.58	3	0.13	2.50	3			3	1		
5	0.30		5	2.47	5	0.24	2.50	5			5			
7	0.33	1.00	7	2.45	7	0.33	2.42	7			7			
10	0.41	1.00	10	2.35	10	0.36	2.37	10			10			
15 20	0.49	1.02	15 20	2.25 2.20	15 20	0.48	2.25 2.15	15 20			15 20			
20 30	0.56	1.04	30	2.20	20 30	0.53	2.15	20 30	0.00	0.43	20 30			
40	0.73		40	1.99	40	0.70	1.97	40	0.00	0.43	40			
60	0.82	1.01	60	1.87	60	0.78	1.87	60	0.00	0.43	60			
90	0.98		90	1.77	90	0.93	1.78	90	0.00	0.43	90 199			
120	1.06	1.03	120 150	1.69	120 150	1.02	1.69	120	0.00	0.43	120 150			
150 180	1.15 1.20	1.01	150 180	1.62 1.57	150 180	1.10 1.17	1.63 1.57	150 180	0.00	0.43	150 180			
210	1.20	1.01	210	1.57	210	1.17	1.57	210	0.02	0.43	210	1		
240	1.32	1.05	240	1.50	240	1.28	1.48	240	0.04	0.43	240			
300	1.39		300	1.41	300	1.34	1.41	300	0.06	0.43	300			
360	1.45	1.02	360	1.35	360	1.42	1.34	360	0.08	0.43	360			
420 480	1.50 1.55	1.00	420 480	1.27 1.20	420 480	1.48 1.50	1.27 1.21	420 480	0.10	0.43	420 480			
540	1.55	1.00	540	1.20	480 540	1.55	1.14	480 540	0.10	0.43	480 540	1		
600	1.64		600	1.10	600	1.61	1.11	600	0.11	0.41	600			
720	1.74		720	1.01	720	1.71	0.97	720	0.12	0.41	720			
840	1.87	1.03	840	0.95	840 060	1.82	0.95	840	0.14	0.41	840			
960 1080	1.94 2.06	1.02	960 1080	0.80	960 1080	1.91 2.03	0.92	960 1080	0.16	0.40	960 1080			
1200	2.00	1.02	1200	0.81	1200	2.03	0.80	1200	0.18	0.40	1200	1		
1320	2.15	1.01	1320	0.73	1320	2.12	0.72	1320	0.21	0.38	1320			
1440	2.20	+	1440	0.67	1440	2.17	0.66	1440	0.23	0.37	1440			
1560	2.28	1.05	1560	0.65	1560	2.25	0.64	1560	0.25	0.37	1560			
1680 1800	2.35 2.39	1.01	1680 1800	0.63	1680 1800	2.32 2.36	0.62	1680 1800	0.27 0.29	0.36	1680 1800			
1920	2.39	1.01	1920	0.56	1920	2.30	0.56	1920	0.29	0.36	1920	1		
2040	2.45	1.03	2040	0.50	2040	2.41	0.50	2040	0.31	0.35	2040			
2160	2.49	+	2160	0.47	2160	2.45	0.47	2160	0.32	0.33	2160			
2280	2.55	1.02	2280	0.45	2280 2400	2.52	0.45	2280	0.33	0.33	2280			
2400 2520	2.59 2.63	1.04	2400 2520	0.42	2400	2.55 2.60	0.42 0.39	2400 2520	0.36	0.32	2400 2520			
2640	2.67	1.04	2640	0.39	2640	2.64	0.39	2640	0.39	0.32	2640			
2760	2.70	1.03	2760	0.35	2760	2.66	0.35	2760	0.43	0.31	2760			
2880	2.73		2880	0.31	2880	2.70	0.31	2880	0.45	0.30	2880			
3000			3000		3000			3000			3000			
3120 3240			3120 3240		3120 3240			3120 3240			3120 3240			
3360			3360		3360			3360			3360			
3480			3480		3480			3480			3480			
3600			3600		3600			3600			3600			
3720			3720		3720			3720			3720			
3840 3960			3840 3960	<u> </u>	3840 3960			3840 3960			3840 3960			
4080			4080	<u> </u>	4080			4080			4080			
4200		1	4200		4200	<u> </u>		4200	1		4200			
4320			4320		4320			4320			4320			
Total tim	ne pumped(mi	n):		2880	 	W/L	10.3		W/L	12		W/L		
Average	yield (l/s):			1.03										

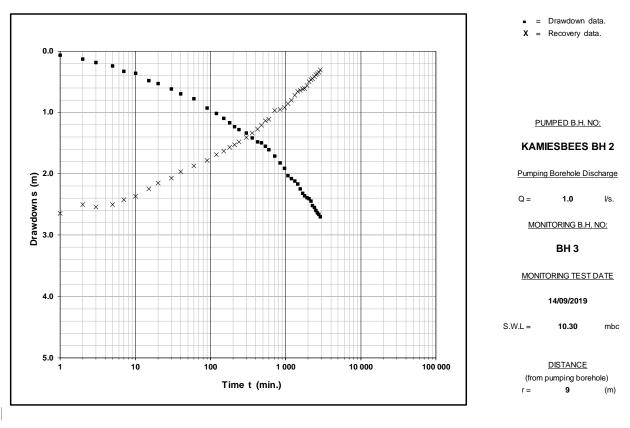
Page 52

						FORM 5	F						
BOREHOL	E TEST	RECORD	SHEET										
PROJ NO :		P22339				MAP REFE	RENCE:			PROVINC	E:	NORTHE	RN CAPE
BOREHOLI	E NO:	KAMIESBI	EES BH 2				S 30.03	738		DISTRICT	:	SPRINGB	OK
ALT BH NO	:						E 18.47	659		SITE NAM	E:	KAMIESB	EES
ALT BH NO	:										1		
BOREHOLI	E DEPTH	:	17.25			DATUMLE			NG (m):		EXISTING		Windpump
NATER LE		,	10.57			CASING H					CONTRA	CTOR:	AB PUMPS
DEPTH OF	PUMP (m	ı):	15.10			DIAM PUM	P INLET(I	mm):		170			
ONSTANT	DISCHAR	GE TEST											
						DISCHARG	-	-				7	
No	TIME (MIN)	REAL TIME	MEA	SUREM	ENTS	No	TIME (MIN)	REAL TIME	ME	ASUREME	ENTS		
	(IVIIIN)		pН	TEMP	EC		(IVIIIN)		pН	TEMP	EC		
			рп	°C	MS/cm				pri	°C	μS/cm		
1	1			0	2.71	43				0	μο/cm		
2	120				2.71	-		1					
3	240				2.67								
4	360				2.00	45							
5	480				2.87	40							
6	600				2.07	48					1	1	
7	720				2.93	49							
8	840				2.98								
9	960				3.01	51							
10	1080				3.04	52							
11	1200				3.08	53							
12	1320				3.07	54							
13	1440				0.06	55							
14	1800				3.09	56							
15	2160				3.09	57							
16	2520				3.11	58							
17	2880				3.15	59							
18	3240					60						_	
19	3600					61							
20	3960					62							
21	4320					63							
22	4680					64						-	
23 24	5040 5400			ł		65 66	┣───		ļ			-	
24 25	5400 5760					66 67						-	
26	6120					68							
20	6480					69					1		
28	7200					70							
29	7560			1		71					1	1	
30	7920					72					1	1	
31	8280					73							
32	8640					74							
33	9000					75							
34	9360					76							
35	9720					77							
36	10080					78							
37	10440					79							
38	10800					80							
39	11160					81							
40	11520					82							
41	11880					83	L						
42	12240					84							


		FORM 6 A		
			REHOLE	10/00/0010
BOREHOLE NO:	KAMIESBEES BH 2	DATE:		13/09/2019
	SPRINGBOK	CONTRACTO	IR:	AB PUMPS
VILLAGE/FARM: LOCALITY	KAMIESBEES			
LOCALITY				
ITEM(S) PARAMETERS	DESCRI	PTION OF EQUIPMENT		
TYPE OF INSTALLATIC	ON (Type of pump,eg, r	eciprocal cylinder,mono-typ	e,handpump))
Туре	WINDPUMP			
Name &model	RECAPROCAL CYLIN	DER 60 mm		
Depth installed (m)	16.43			
Element Diameter (m)	0.07			
Element stroke (m)	0.6			
	PIPE CO	LUMNS & SHAFTS		
Diameter (mm)	50			
Length / section (m)	3			
No of sections	5 & 1M			
Pipe material	GALVANISED STEEL			
Shaft diameter (mm)	16			
	MOTORIZED	PUMP INSTALLATION		
Туре				
Name model of motor				
motor power rating				
motor pulley diam				
Pump pulley diam				
HANDPUMP				
Name / model				
Wheel diam (m)	3			
Mast height (m)	7			
SOLAR PUMP				
No of panels				
Rating per panel				
ANCILLARY EQUIPMEN	IT			
Storage tank (It)		Type riser		
Stand height(m)		Class riser	HDPE	
Water meter name		Diameter of riser	40	
Water meter reading		Condition of riser	GOOD	
Type of reservoir		Pump rooms		
Reservoir size		Type of pump room		
Reservoir condition		Material of enclosure		
Stand height (m)		Condition of enclosure		
DE-ESTABLISHMENT F	ROM SITE TO WHERE:			

STEP DRAWDOWN TEST DATA PLOT

Page 54


CONSTANT DISCHARGE TEST DATA PLOT

MONITORING BOREHOLE TEST DATA PLOT

= Drawdown data.

MONITORING BOREHOLE TEST DATA PLOT

X = Recovery data. 0.0 ----× ×××× ×××××× $\times \times \times >$ PUMPED B.H. NO: 1.0 KAMIESBEES BH 2 Pumping Borehole Discharge 2.0 Drawdown s (m) Q = 1.0 MONITORING B.H. NO: 3.0 BH 1 MONITORING TEST DATE 14/09/2019 4.0 S.W.L = 12.00 5.0 DISTANCE 10 100 1 000 10 000 100 000 (from pumping borehole) Time t (min.) r = 180

February 2020

l/s.

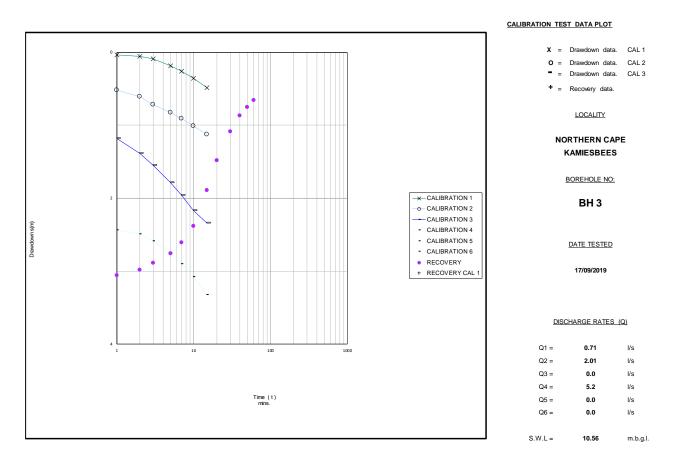
mbc

(m)

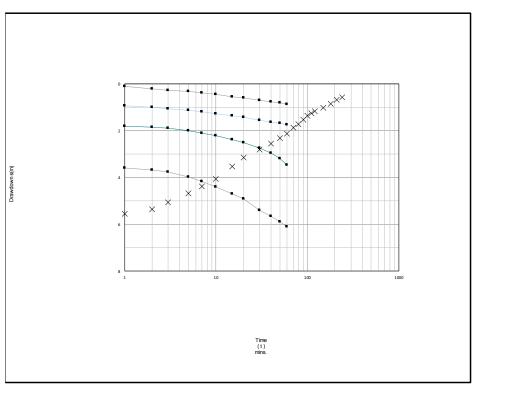
Copyright subsists in this work. No part of this work may be reproduced in any form or by any means without the publisher's written permission. Any unauthorised reproduction of this work will constitute a copyright infringement and render the doer liable under both civil and criminal law.

Telephone: 043-732 Fax no: 043-732 142 Fax to e-mail: 0866 E mail: office@abput	22 717 732		EC mbgi mbch magi L/S RPM S/W/L µS/cm	Abbreviations Electrical conductivity Meters below ground level Meters below casing height Meters below datum level Meters above ground level Litres per second Rates per minute Static water level Microsiemens per centimeter					AB
				LE TEST REC	CORD	<u>)</u>		Ground water soluti	ons t/a AB Pumps CC
								PR0JECT #	P2239
								BBR	ABEL
CONSULTANT:	AARDBOOR						-		ISAAC
DISTRICT:	SPRINGBOK						_		ZANELE
PROVINCE:	NORTHERN CAL	PE					_	PRODUCTION BONUS:	KOLEN
FARM / VILLAGE NAME :	KAMIESBEES								
DATE TESTED:	18/09/2019						-	EC meter number	
MAP REFERENCE: CO-ORDINATES:				_			_		
FORMAT ON GR	s: hddd	°mm '	SS.S			hddd	°mm.mmm	•	hddd.ddddd
		•	ı				•		S 30.03748
LATITU		•	1	н	- OR		0	- OR	E 18 47666
LONGITUE					-			_	
BOREHOLE NO:	BH 3				-				
TRANSMISSIVITY VALUE:					-				
TYPE INSTALLATION: BOREHOLE DEPTH: (mbgl)	WINDMILL 30.20				-				
					_				
COMMENTS: THE F.	ARM OWNER REMO	VED THE EXIS	STING PUMP	HIMSELF,					
SAMDI E INSTRUCTIONS -									
SAMPLE INSTRUCTIONS :	Yes	No		Test for:		macro	bacterio-logical	DATA CAPTURED BY:	ELZAAN
	Yes 19/09/20		lf co	Test for: nsultant took sample, give	name:	macro	bacterio-logical	DATA CAPTURED BY: DATA CHECKED BY:	ELZAAN AVN
Water sample taken Date sample taken	19/09/20		lf co		name:	macro	bacterío-logical	-	
Water sample taken Date sample taken Time sample taken			lf co		name:	macro	bacterio-logical	-	
Water sample taken Date sample taken Time sample taken CONSULTANT GUIDELINES	19/09/20 08H00	19					bacterio-logical	-	AVN
Water sample taken Date sample taken Time sample taken CONSULTANT GUIDELINES BOREHOLE DEPTH:	19/09/20 08H00	19 STE	EP 1:		l/s	WATER STRIKE 1:	bacterio-logical	-	AVN
Water sample taken Date sample taken Time sample taken CONSULTANT GUIDELINES BOREHOLE DEPTH: BLOW YELD:	19/09/20 08H00 m	19 STE STE	EP 1: EP 2:		Vs Vs	WATER STRIKE 1: WATER STRIKE 2:	bacterio-logical	-	AVN m m
Water sample taken Date sample taken Time sample taken CONSULTANT GUIDELINES	19/09/20 08H00	19 STE STE	EP 1:		l/s	WATER STRIKE 1:	bacterio-logical	-	AVN
Water sample taken Date sample taken Time sample taken CONSULTANT GUIDELINES BOREHOLE DEPTH: BLOW YELD: STATIC WATER LEVEL: PUMP INSTALLATION DEPTH:	19/09/20 08H00 m m m	19 STE STE STE	EP 1: EP 2: EP 3:		Vs Vs Vs	WATER STRIKE 1: WATER STRIKE 2: WATER STRIKE 3:	bacterio-logical	-	AVN m m
Water sample taken Date sample taken Time sample taken CONSULTANT GUIDELINES BOREHOLE DEPTH: BLOW YELD: STATIC WATER LEVEL:	19/09/20 08H00 m m m	19 STE STE STE STE	EP 1: EP 2: EP 3: EP 4:		Vs Vs Vs Vs	WATER STRIKE 1: WATER STRIKE 2: WATER STRIKE 3: COMMENTS:	bacterio-logical	DATA CHECKED BY:	AVN m m
Water sample taken Date sample taken Time sample taken CONSULTANT GUIDELINES BOREHOLE DEPTH: BLOW YELD: STATIC WATER LEVEL: PUMP INSTALLATION DEPTH: RECOVERY:	19/09/20 08H00 m m m m	19 STE STE STE STE STE	EP 1: EP 2: EP 3: EP 4: EP 5:		Vs Vs Vs Vs Vs	WATER STRIKE 1: WATER STRIKE 2: WATER STRIKE 3: COMMENTS:		DATA CHECKED BY:	AVN m m
Water sample taken Date sample taken CONSULTANT GUIDELINES BOREHOLE DEPTH: BLOW YELD: STATIC WATER LEVEL: PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS:	19/09/20 08H00 m m m m h	19 STE STE STE STE STE	EP 1: EP 2: EP 3: EP 4: EP 5: EP 6:		Vs Vs Vs Vs Vs Vs	WATER STRIKE 1: WATER STRIKE 2: WATER STRIKE 3: COMMENTS:		DATA CHECKED BY:	AVN m m
Water sample taken Date sample taken Time sample taken CONSULTANT GUIDELINES BOREHOLE DEPTH: BLOW YELD: STATIC WATER LEVEL: PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT: DESCRIPTION:	19/09/20 08H00 m m m m h	19 STE STE STE STE STE STEP DI	EP 1: EP 2: EP 3: EP 4: EP 5: EP 6: JRATION:		Vs Vs Vs Vs Vs Vs min	WATER STRIKE 1: WATER STRIKE 2: WATER STRIKE 3: COMMENTS:		DATA CHECKED BY:	AVN m m
Water sample taken Date sample taken Time sample taken CONSULTANT GUIDELINES BOREHOLE DEPTH: BLOW YELD: STATIC WATER LEVEL: PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT: DESCRIPTION: STRAIGHTNESS TEST:	19/09/20 08H00 m m m m h	19 STE STE STE STE STE STE UNIT	EP 1: EP 2: EP 3: EP 4: EP 5: EP 6: JRATION: QTY	nsultant took sample, give	Vs Vs Vs Vs Vs Vs min	WATER STRIKE 1: WATER STRIKE 2: WATER STRIKE 3: COMMENTS: TELEPHONE NUME		ATA CHECKED BY:	AVN m m QTY
Water sample taken Date sample taken Time sample taken CONSULTANT GUIDELINES BOREHOLE DEPTH: BLOW YELD: STATIC WATER LEVEL: PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT: DESCRIPTION: STRAIGHTNESS TEST: VERTICALLY TEST:	19/09/20 08H00 m m m m h	19 STE STE STE STE STE UNIT NO	EP 1: EP 2: EP 3: EP 4: EP 5: EP 6: JRATION: QTY 0	BOREHOLE DEPTH AFTER T	Us Us Us Us Us Min TEST:	WATER STRIKE 1: WATER STRIKE 2: WATER STRIKE 3: COMMENTS: TELEPHONE NUME		ATA CHECKED BY:	AVN m m QTY 30.20
Water sample taken Date sample taken Time sample taken CONSULTANT GUIDELINES BOREHOLE DEPTH: BLOW YELD: STATIC WATER LEVEL: PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT:	19/09/20 08H00 m m m h h	19 STE STE STE STE STE UNIT NO NO	EP 1: EP 2: EP 3: EP 4: EP 5: EP 6: JRATION: QTY 0 0	BOREHOLE DEPTH AFTER T	Vs Vs Vs Vs Vs Vs min TEST: AFTER TEST: D?	WATER STRIKE 1: WATER STRIKE 2: WATER STRIKE 3: COMMENTS: TELEPHONE NUME		ATA CHECKED BY:	AVN m m m QTY 30.20 10.99
Water sample taken Date sample taken Time sample taken CONSULTANT GUIDELINES BOREHOLE DEPTH: BLOW YELD: STATIC WATER LEVEL: PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT: DESCRIPTION; STRAIGHTNESS TEST; VERTICALLY TEST; CASING DETECTION; SUPPLED NEW STEEL BOREHO	19/09/20 08H00 m m m h h	19 STE STE STE STE STE UNIT NO NO NO NO	EP 1: EP 2: EP 3: EP 4: EP 5: EP 6: URATION: QTY 0 RUST	BOREHOLE DEPTH AFTER I BOREHOLE WATER LEVEL / SAND/GRAVEL/SILT PUMPEI	Vs Vs Vs Vs Vs Vs min TEST: AFTER TEST: D?	WATER STRIKE 1: WATER STRIKE 2: WATER STRIKE 3: COMMENTS: TELEPHONE NUME		ATA CHECKED BY:	AVN m m m 2020 10.99 0
Water sample taken Date sample taken Time sample taken CONSULTANT GUIDELINES BOREHOLE DEPTH: BLOW YELD: STATIC WATER LEVEL: PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT: DESCRIPTION: STRAIGHTNESS TEST: VERTICALLY TEST: CASING DETECTION: SUPPLIED NEW STEEL BOREHO BOREHOLE MARKING	19/09/20 08H00 m m m h h	19 STE STE STE STE STE DUNIT NO NO NO NO	EP 1: EP 2: EP 3: EP 4: EP 5: EP 6: JRATION: QTY 0 0 RUST 0	BOREHOLE DEPTH AFTER T BOREHOLE WATER LEVEL / SAND/GRAVEL/SILT PUMPEI DATA REPORTING AND REC	Vs Vs Vs Vs Vs Vs min TEST: AFTER TEST: D?	WATER STRIKE 1: WATER STRIKE 2: WATER STRIKE 3: COMMENTS: TELEPHONE NUME		ATA CHECKED BY:	AVN m m m 2020 10.99 0 1
Water sample taken Date sample taken Time sample taken CONSULTANT GUIDELINES BOREHOLE DEPTH: BLOW YELD: STATIC WATER LEVEL: PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT: DESCRIPTION: STRAIGHTNESS TEST: VERTICALLY TEST: CASING DETECTION: SUPPLIED NEW STEEL BOREHO BOREHOLE MARKING SITE CLEANING & FINISHING	19/09/20 08H00 m m m m h h h	19 STE STE STE STE STE STE DI NO NO NO NO NO	EP 1: EP 2: EP 3: EP 4: EP 5: EP 5: EP 6: JRATION: 0 RUST 0 0 1	BOREHOLE DEPTH AFTER T BOREHOLE DEPTH AFTER T BOREHOLE WATER LEVEL / SAND/GAVEL/SILT PUMPEI DATA REPORTING AND REC SLUG TEST:	Vs Vs Vs Vs Vs Vs min TEST: AFTER TEST: D?	WATER STRIKE 1: WATER STRIKE 2: WATER STRIKE 3: COMMENTS: TELEPHONE NUME		ATA CHECKED BY:	AVN m m m 200 10.99 0 1 0 1 0
Water sample taken Date sample taken Time sample taken CONSULTANT GUIDELINES BOREHOLE DEPTH: BLOW YELD: STATIC WATER LEVEL: PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT: DESCRIPTION: STRAIGHTNESS TEST: VERTICALLY TEST: CASING DETECTION: SUPPLIED NEW STEEL BOREHO BOREHOLE MARKING SITE CLEANING & FINISHING	19/09/20 08H00 m m m h h e NNTORING	19 STE STE STE STE STE UNIT NO NO NO NO NO NO NO NO NO NO NO NO NO	EP 1: EP 2: EP 3: EP 4: EP 5: EP 6: JRATION: QTY 0 0 RUST 0 1 1 1 1	BOREHOLE DEPTH AFTER T BOREHOLE DEPTH AFTER T BOREHOLE WATER LEVEL / SAND/GRAVEL/SILT PUMPEI DATA REPORTING AND REC SLUG TEST: LAYFLAT (M): LOGGERS FOR pH AND EC:	Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs Or Disconting	WATER STRIKE 1: WATER STRIKE 2: WATER STRIKE 3: COMMENTS: TELEPHONE NUME		DATA CHECKED BY:	AVN m m m 200 10.99 0 1 0 50
Water sample taken Date sample taken Time sample taken CONSULTANT GUIDELINES BOREHOLE DEPTH: BLOW YELD: STATIC WATER LEVEL: PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT: DESCRIPTION: STRAIGHTNESS TEST: VERTICALLY TEST: CASING DETECTION: SUPPLED NEW STEEL BOREHO BOREHOLE MARKING SITE CLEANING & FINISHING LOGGERS FOR WATERLEVEL W	19/09/20 08H00 m m m h h e NNTORING	19 STE STE STE STE STE UNIT NO NO NO NO NO NO NO NO NO NO NO NO NO	EP 1: EP 2: EP 3: EP 4: EP 5: EP 6: JRATION: QTY 0 0 RUST 0 1 1 1 1	BOREHOLE DEPTH AFTER T BOREHOLE DEPTH AFTER T BOREHOLE WATER LEVEL / SAND/GRAVEL/SILT PUMPEI DATA REPORTING AND REC SLUG TEST: LAYFLAT (M): LOGGERS FOR pH AND EC:	Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs Or Disconting	WATER STRIKE 1: WATER STRIKE 2: WATER STRIKE 3: COMMENTS: TELEPHONE NUME		DATA CHECKED BY:	AVN m m m 200 10.99 0 1 0 50
Water sample taken Date sample taken Time sample taken CONSULTANT GUIDELINES BOREHOLE DEPTH: BLOW YELD: STATIC WATER LEVEL: PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT: DESCRIPTION: STRAIGHTNESS TEST: VERTICALLY TEST: CASING DETECTION: SUPPLIED NEW STELL BOREHO BOREHOLE MARKING LOGGERS FOR WATERLEVEL MK It is hereby acknowledged tha NAME:	19/09/20 08H00 m m m m m h h h e cover: cover:	19 STE STE STE STE STE UNIT NO NO NO NO NO NO NO NO Site, all exis	EP 1: EP 2: EP 3: EP 4: EP 5: EP 6: JRATION: QTY 0 0 RUST 0 1 1 1 1	BOREHOLE DEPTH AFTER T BOREHOLE DEPTH AFTER T BOREHOLE WATER LEVEL / SAND/GRAVEL/SLT PUMPEI DATA REPORTING AND REC SLUG TEST: LAYFLAT (M): LOGGERS FOR pH AND EC: nent is in an acceptable co	Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs V	WATER STRIKE 1: WATER STRIKE 2: WATER STRIKE 3: COMMENTS: TELEPHONE NUME	JERS PHONE : (NAME &	DATA CHECKED BY:	AVN m m m 200 10.99 0 1 0 50
Water sample taken Date sample taken Time sample taken CONSULTANT GUIDELINES BOREHOLE DEPTH: BLOW YELD: STATIC WATER LEVEL: PUMP INSTALLATION DEPTH: RECOVERY: AFTER STEPS: AFTER CONSTANT: DESCRIPTION: STRAIGHTNESS TEST: VERTICALLY TEST: CASING DETECTION: SUPPLED NEW STELL BOREHO BOREHOLE MARKING LOGGERS FOR WATERLEVEL MG It is hereby acknowledged tha	19/09/20 08H00 m m m m m h h h e cover: cover:	19 STE STE STE STE STE UNIT NO NO NO NO NO NO NO NO Site, all exis	EP 1: EP 2: EP 3: EP 4: EP 5: EP 6: JRATION: QTY 0 0 RUST 0 1 1 1 1	BOREHOLE DEPTH AFTER T BOREHOLE DEPTH AFTER T BOREHOLE WATER LEVEL / SAND/GRAVEL/SLT PUMPEI DATA REPORTING AND REC SLUG TEST: LAYFLAT (M): LOGGERS FOR pH AND EC: nent is in an acceptable co	Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs V	WATER STRIKE 1: WATER STRIKE 2: WATER STRIKE 3: COMMENTS: TELEPHONE NUME	JERS PHONE : (NAME &	DATA CHECKED BY:	AVN m m m 200 10.99 0 1 0 50

BOREHOLE TEST CONTROL SHEET Groundwater Solutions t/a AB PUMPS


		Grou	ndwater Solut	tions t/a AB P	UMPS	-			
Borehole numb	per:	BH	13	Old / Alternativ	/e number:				
Contractor:		AB PL	JMPS	Supervisor:			ABEL		
Operator:		ISA	AC	Rig number &	Type rig:		27		
			EXISTING E		-	-			
Type pump	Depth	Condition	Drive unit	Condition	Pump house	Condition	R	emarks	
Pump type		Depth installe	、 <i>i</i>	Date & time (Date & time (com	pleted)		
WA	22.2	27			19 13H00	1	8/09/2019 21	100	
ST		DURATI		TEPTEST DE	TAILS ERY (MIN)	VIELD	(1./6)	DRAWDOWN	(m)
1	EP	DURATI 6		RECOVE		1.04	(∟/5) ⊮s	0.88	(m)
2		6				2.02	l/s	1.74	
3		6				4.04	l/s	3.46	
4		6		2	40	5.70	l/s	6.11	
5							l/s		
6							l/s		
7							l/s		
8							l/s		
Calibration:		6		6	60		l/s		
TOTAL:		30	00	3	00		l/s		
COMMENT:					терт				
Dump turns				DISCHARGE		Data & time (aam	m loto d\		
Pump type	20.0	Depth installe		Date & time (started)	Date & time (com	ipieted)		
WA Yield I/s	22.2	27		Duration (mit	•	Decessory (min)			
0.0	20	Drawdown (n	1)	Duration (min	-	Recovery (min)			
		L Discharge and	-)		0		200		
	te and Consta	nt Discharge rat	e)	3	00		300		
COMMENT:									
				MAINTENAN	<u>с</u> е				
Mark time.		hour	Transport			Troughing (To fin)		Km	
Work time:	placed or repr	hour	Transport exis	ung equipm.	<u>NIII</u>	Travelling (To fix);		Km	
List of parts re	placed of tepa	alleu.							
		Borehole nur	nher	Duration (mi		Drawdown (m)	Hand/logger	Distance (m)	
Observation H	ala 1	Borenole nul		Duration (init			nanu/logger	Distance (III)	0
Observation H									0
									0
Observation H Observation H									0
Observation H									
Observation			CEN	ERAL					
ESTABLISHM		From:	KAMIESBEE						
Site Move		T			Baaaa	Travelling km:		0.91	
		From project#		To #:	P2239				
		Village	Borehole no	Village	Borehole no				
		KAMIESBEE		KAMIESBEE					
		S	BH2	S	BH 3				
Maintenance:				Parts					
		Work time hr		repaired/		Travelling km			
				replaced					
After test meas	surements	Water level	10.99	Borehole depth	30.20	Casing depth m	RUST		
Water level be	fore installing	test pump: (mbc	h)	10.56	<u>]</u>		11001		
Depth before i			,	30.20					
Testpump Insta	÷ :	Once /Twice /	More	Reason:					
Installed Testp		<10 l/s / >1		Reason:					
Was existing e			0.010	No:	If not who to	as it loft:			
GPS Unit num					If not where wa		I		
EC Unit numbe				0					
	<i>.</i>			v					
Remarks: Signed Contra	ctor:				Signed Consu	lltant:			
Signed Contra	ictor:				Signed Consu	iltant:			

						-	RM 5 [,					
BOREHOLE T	ESTRECOR		т		CALIBRA	TION TEST	& REC	OVERY						
PROJ NO : BOREHOLE N ALT BH NO:		P2239			ENCE:	0				PROVII DISTRI SITE N	CT:		NORTH SPRING	
ALT BH NO: BOREHOLE D WATER LEVEL				30.20 10.82		VEL ABOVE EIGHT (mag		6 (m):	0.26 0.32		NG PUMP: RACTOR:		0 AB PUN	MPS
DEPTH OF PU				27.10		P INLET (mr	,		170.00	PUMP			WA 22.	
				CALIBRAT	ION TEST	AND RECO	VERY			-				
DISCHARGE F	RATE 1		RPM	363	DISCHARC	GE RATE 2		RPM	365	DISCH	ARGE RAT	E 3	RPM	975
DATE:	17/09/2019		10H30		DATE:	17/09/2019		10H45			17/09/201		11H00	•
TIME	DRAW		TIME	RECOVERY		DRAW	YIELD	TIME	RECOVERY	TIME	DRAW		TIME	RECOVERY
(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (M)		(MIN)	(M)	(MIN)	DOWN (N	(L/S)	(MIN)	(M)
1	0.04		1 2		1 2	0.52	1.60	1 2		1 2	1.18	4.04	1 2	
2	0.06	0.74				0.61	2.01				1.39	4.01		
3	0.09	0.71	3		3	0.72	0.00	3		3	1.55	4.00	3	
5	0.19	4.00	5		5 7	0.83	2.03	5		5	1.79	4.08	5 7	
7	0.26	1.03	7		-	0.91	0.00	7	+	7	1.96	4.00	·	+
10	0.36	4.00	10		10	1.01	2.02	10	+	10	2.17	4.06	10	+
15	0.49	1.02	15		15	1.13		15	+	15	2.34		15	+
			20					20					20	<u> </u>
	<u> </u>		30					30					30	<u> </u>
	<u> </u>		40					40				<u> </u>	40	
			50					50					50	<u> </u>
			60					60					60	
			70					70					70	
			80					80					80	
			90					90					90	
			100					100					100	
			110					110					110	
			120					120					120	
			150					150					150	
DISCHARGE F			RPM	1491	DISCHARC	GE RATE 5	1	RPM			ARGE RAT	T	RPM	
DATE:	17/09/2019		11H15	1	DATE:	T	TIME:	1	1	DATE:	1	TIME:	1	
TIME	DRAW	YIELD	TIME	RECOVERY		DRAW	YIELD	TIME	RECOVERY	TIME	DRAW	YIELD	TIME	RECOVERY
(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (N	(L/S)	(MIN)	(M)
1	2.44		1	3.06	1			1		1			1	
2	2.49		2	2.98	2			2		2			2	
3	2.59	5.20	3	2.89	3			3		3			3	<u> </u>
5	2.75		5	2.76	5			5		5			5	
7	2.90	5.70	7	2.61	7			7		7			7	
10	3.08		10	2.38	10			10		10		<u> </u>	10	
15	3.32	5.68	15	1.89	15			15		15			15	
			20	1.48				20		<u> </u>		L	20	
			30	1.09				30		<u> </u>		<u> </u>	30	
	ļ		40	0.87				40		<u> </u>		L	40	
			50	0.75				50		<u> </u>		L	50	
	ļ		60	0.66		ļ	<u> </u>	60	ļ	<u> </u>	ļ	<u> </u>	60	
	ļ		70					70		<u> </u>		L	70	<u> </u>
	ļ		80			ļ	<u> </u>	80	ļ	<u> </u>	ļ	<u> </u>	80	
	ļ		90			ļ	<u> </u>	90	ļ		ļ		90	
	ļ		100			ļ	<u> </u>	100	ļ	<u> </u>	ļ	<u> </u>	100	
	ļ		110			ļ	<u> </u>	110	ļ	<u> </u>	ļ	<u> </u>	110	
			120					120		ļ		L	120	
	ļ		150					150		L		L	150	
COMMENTS:														
SM/1 · (mhah)	10 FG													
S/W/L: (mbch)	10.56													


				STEPPED I	DISCHAR	-	RM 5 RECO							
PROJ NO : BOREHOLE ALT BH NO:		P2239 BH 3 0		MAP REFER	ENCE:	0				PROVIN DISTRI SITE N	CT:	NORTH SPRING		APE
WATER LEV	DEPTH (m) /EL (mbdl):	0	30.20 10.82		CASING H	EVEL ABOVE IEIGHT: (ma	agl):	IG (m):	0.26 0.32	CONTR	NG PUMP: RACTOR:	0 AB PUN	<i>I</i> PS	
DEPTH OF I	PUMP (m):		27.10			/IP INLET (m	,		170.00	PUMP	TYPE:	WA 22.	2	
DISCHARGI			RPM	410		DISCHARG GE RATE 2	ETES	RPM	398		ARGE RATI	- 2	RPM	1002
DISCHARG			NEW	410		GE KATE Z		NEW	390	DISCH	ANGE NAT	3	NEW	1002
DATE:	18/09/2019		13H00		DATE:	18/09/2019		14H00			18/09/201		15H00	
TIME (MIN)	DRAW DOWN (M)	YIELD (L/S)	TIME (MIN)	RECOVERY (M)	TIME (MIN)	DRAW DOWN (M)	YIELD	TIME (MIN)	RECOVERY (M)	TIME (MIN)	DRAW DOWN (M	YIELD	TIME (MIN)	RECOVERY (M)
4	0.11	(L/3)	(101114)	(10)	(101114)	0.95	1.94	1	(101)	(101111)	1.81	(L/3)	(IVIII V)	(10)
2	0.11	1.05	2		2	1.01	1.94	2		2	1.85	4.03	2	
	-	1.05					0.00			-		4.03		
3	0.29	4.00	3 5		3 5	1.06	2.03	3		3 F	1.90	4.0.4	3	
5	0.32	1.03	5 7		5 7	1.13	0.04	5		5 7	2.00	4.04	5 7	
7	0.39				-	1.19	2.01	7			2.10		-	
10	0.45	1.04	10		10	1.28	·	10		10	2.22	4.02	10	
15	0.55		15		15	1.36	2.01	15		15	2.39		15	
20	0.60	1.03	20		20	1.44		20		20	2.52	4.03	20	
30	0.70	<u> </u>	30		30	1.55	2.03	30		30	2.74		30	
40	0.77	1.03	40		40	1.64		40		40	2.97	4.01	40	
50	0.82		50		50	1.69	2.02	50		50	3.20		50	
60	0.88	1.04	60	ļ	60	1.74		60	ļ	60	3.46	4.04	60	
70			70		70			70		70			70	
80			80		80			80		80			80	
90			90		90			90		90			90	
100			100		100			100		100			100	
110			110		110			110		110			110	
120			120		120			120		120			120	
pН			150		pН			150		pН			150	
TEMP		°C	180		TEMP		°C	180		TEMP		°C	180	
EC	2.81	MS/cm	210		EC	2.86	MS/cm	210		EC	2.91	MS/cm	210	
DISCHARGI	E RATE 4		RPM		DISCHAR	GE RATE 5		RPM		DISCH	ARGE RATE	6	RPM	
DATE:	18/09/2019	TIME:	16H00		DATE:		TIME:			DATE:		TIME:		
TIME	DRAW	YIELD	TIME	RECOVERY	TIME	DRAW	YIELD	TIME	RECOVERY	TIME	DRAW	YIELD	TIME	RECOVERY
(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (M)		(MIN)	(M)	(MIN)	DOWN (M		(MIN)	(M)
1	3.59	(· - /	1	5.55	1	- ()	(- /	1		1	- ()	(/	1	
2	3.68	4.87	2	5.37	2			2		2			2	
3	3.76	4.07	3	5.06	3			3		3			3	
5	3.99	5.68	5	4.68	5			5		5			5	
5 7		5.00	7		3 7			3 7		3 7			3 7	
-	4.18	5.00		4.39						-				
10	4.40	5.69	10	4.07	10 15			10		10			10	
15	4.70	F 70	15	3.53	15	+		15	+	15			15	
20	4.92	5.72	20	3.15	20			20		20			20	
30	5.40		30	2.82	30			30		30			30	
			40	2.55	40	ł		40	+	40			40	-
	5.66	5.72	1					150	1	50	1		50	
50	5.66 5.90		50	2.33	50			50						•
50 60	5.66	5.72	50 60	2.13	60			60		60			60	
50 60	5.66 5.90		50 60 70		60 70			60 70		70			70	
50 60 70	5.66 5.90		50 60 70 80	2.13	60 70 80			60 70 80		70 80			70 80	
50 60 70 80	5.66 5.90		50 60 70	2.13 1.88	60 70			60 70		70			70	
50 60 70 80 90	5.66 5.90		50 60 70 80	2.13 1.88 1.72	60 70 80			60 70 80		70 80			70 80	
50 60 70 80 90 100	5.66 5.90		50 60 70 80 90	2.13 1.88 1.72 1.53	60 70 80 90			60 70 80 90		70 80 90			70 80 90	
50 60 70 80 90 100 110	5.66 5.90		50 60 70 80 90 100	2.13 1.88 1.72 1.53 1.37	60 70 80 90 100			60 70 80 90 100		70 80 90 100			70 80 90 100	
50 60 70 80 90 100 110	5.66 5.90		50 60 70 80 90 100 110	2.13 1.88 1.72 1.53 1.37 1.25	60 70 80 90 100 110			60 70 80 90 100 110		70 80 90 100 110			70 80 90 100 110	
50 60 70 80 90 100 110 120	5.66 5.90		50 60 70 80 90 100 110 120	2.13 1.88 1.72 1.53 1.37 1.25 1.17	60 70 80 90 100 110 120		•C	60 70 80 90 100 110 120		70 80 90 100 110 120		°C	70 80 90 100 110 120	
50 60 70 80 90 100 110 120 pH TEMP	5.66 5.90 6.11	5.70	50 60 70 80 90 100 110 120 150 180	2.13 1.88 1.72 1.53 1.37 1.25 1.17 1.03	60 70 80 90 100 110 120 рН		°C µS/cm	60 70 80 90 100 110 120 150		70 80 90 100 110 120 pH		°C µS/cm	70 80 90 100 110 120 150	
50 60 70 80 90 100 110 120 pH	5.66 5.90	5.70	50 60 70 80 90 100 110 120 150 180 210	2.13 1.88 1.72 1.53 1.37 1.25 1.17 1.03 0.86 0.69	60 70 80 90 100 110 120 pH TEMP			60 70 80 90 100 110 120 150 180		70 80 100 110 120 pH TEMP			70 80 90 100 110 120 150 180 210	
TEMP	5.66 5.90 6.11	5.70	50 60 70 80 90 100 110 120 150 180 210 240	2.13 1.88 1.72 1.53 1.37 1.25 1.17 1.03 0.86	60 70 80 90 100 110 120 pH TEMP			60 70 80 90 100 110 120 150 180 210 240		70 80 100 110 120 pH TEMP			70 80 90 100 110 120 150 180 210 240	
50 60 70 80 90 100 110 120 pH TEMP	5.66 5.90 6.11	5.70	50 60 70 80 90 100 110 120 150 180 210	2.13 1.88 1.72 1.53 1.37 1.25 1.17 1.03 0.86 0.69	60 70 80 90 100 110 120 pH TEMP			60 70 80 90 100 110 120 150 180 210		70 80 100 110 120 pH TEMP			70 80 90 100 110 120 150 180 210	

				FORM 5		•	-					
BUDEI	HOLE TEST R			NT DISCHAR	GE TES	T & RECOV	'ERY					
PROJN		P2239	SHEET	MAP REFER	ENCE:	S 30.03748	}		PROVINCE		NORT	HERN CAPE
	IOLE NO:	BH 3				E 18 47666			DISTRICT:		SPRIN	
ALT BH	NO:	0							SITE NAME	:		SBEES
ALT BH		0										JDLLJ
-	IOLE DEPTH:	30.20		DATUMLEV			n):	0.26	EXISTING	-	0	
	LEVEL (mbdl):			CASING HE				0.32 170	CONTRAC PUMP TYP		AB PUI	
	OF PUMP (m):			DIAM PUMP	INLEI (M	m):		170	PUMPTTP	Ε.	WA 22.	2
	ANT DISCHARC	SE LES I 8	RECOVER	1					r			
TEST S	TARTED	1	Ī	TEST COMP	LETED		1	1				1
DATE:		TIME:			DATE:		TIME:		TYPE OF P	UMP:		WA 22.2
		•			OBSER	VATION HOL	E 1	OBSERV	ATION HOL	E 2	OBSER	RVATION HOLE 3
					NR:			NR:			NR:	
	DISCHARGE B	OREHOLE			Distanc	e(m):		Distance	(m):		Distan	ce(m):
	DRAW	YIELD	TIME	RECOVERY	TIME:		Recovery	TIME:	Drawdown	Recovery		Drawdown
(MIN)	DOWN (M)	(L/S)	MIN	(M)	(min)	m	(m)	(min)	(m)	Ĺ	(min)	(m)
1			1		1			1			1	
2			2		2			2			2	
3		-	3		3			3			3	
5		+	5 7	-	5 7		 	5			5 7	
7 10			7 10		7 10			7 10			7 10	
10 15		-	10		10 15			10			10	
20		1	20		20	1	1	20			20	1
30		1	30		30			30		1	30	1
40			40		40			40			40	
60			60		60			60			60	
90			90		90			90			90	
120			120		120			120			120	
150		-	150	-	150			150		-	150	
180 210			180 210		180 210			180 210			180 210	
240			240		240			240			240	
300			300	1	300			300			300	
360			360		360			360			360	
420			420		420			420			420	
480			480		480			480			480	
540			540		540			540			540	
600			600		600			600			600	
720 840			720 840		720 840			720 840			720 840	
960			960		960			960			960	
1080			1080		1080			1080			1080	
1200			1200		1200			1200			1200	
1320			1320		1320			1320			1320	
1440		<u> </u>	1440		1440			1440			1440	ļ
1560			1560	1	1560			1560			1560	
1680		+	1680	-	1680 1800		 	1680		ł	1680	
1800 1920			1800 1920		1800 1920			1800 1920			1800 1920	
2040		-	2040		2040			2040			2040	
2160		1	2160		2160		1	2160			2160	1
2280			2280		2280			2280			2280	
2400			2400		2400			2400			2400	
2520			2520		2520			2520			2520	
2640		-	2640		2640			2640			2640	
2760		+	2760		2760			2760			2760	
2880 3000			2880 3000		2880 3000			2880 3000			2880 3000	
3000		-	3000		3000 3120			3000			3000	
3240		1	3240		3240		1	3240		1	3240	1
3360		1	3360		3360		1	3360			3360	
3480			3480		3480			3480			3480	
3600			3600		3600			3600			3600	
3720		 	3720		3720	ļ	ļ	3720			3720	
3840			3840		3840			3840			3840	
3960		+	3960	-	3960		 	3960		ł	3960	
4080			4080 4200		4080 4200			4080 4200			4080 4200	
4200 4320		+	4200 4320		4200 4320	+	<u> </u>	4200 4320		ł	4200 4320	+
	ne pumped(mi	0).				W/L			W/L	†		W/L
Total tin	ne numneaimu											

		FORM 6 A		· · · · ·
RECORD OF EXISTING				
BOREHOLE NO:	BH 3	DATE:		
DISTRICT:	SPRINGBOK	CONTRAC	CTOR:	AB PUMPS
VILLAGE/FARM:	KAMIESBEES			
LOCALITY	NORTHERN C			
ITEM(S) PARAN	IETERS	DESCRIPTION O	F EQUIPMENT	
TYPE OF INSTALLATIO	ON (Type of pum	ıp,eg, reciprocal cylinder,mono-	type,handpum	p)
Туре	RECIPROCAL	CYLINDER		
Name &model	WINDMILL			
Depth installed (m)	19.6			
Element Diameter (m)	0.07			
Element stroke (m)	0.6			
	Р	IPE COLUMNS & SHAFTS		
Diameter (mm)				
Length / section (m)				
No of sections				
Pipe material				
Shaft diameter (mm)				
	мото	DRIZED PUMP INSTALLATION		
Туре	40			
Name model of motor	3			
motor power rating				
motor pulley diam	GALVANISED	STEEL		
Pump pulley diam				
HANDPUMP				
Name / model				
Wheel diam (m)	3			
Mast height (m)	6			
SOLAR PUMP				
No of panels				
Rating per panel				
ANCILLARY EQUIPMEN	IT			
Storage tank (It)		Type riser		
Stand height(m)		Class riser	HDPE	
Nater meter name		Diameter of riser	40MM	
Nater meter reading		Condition of riser	GOOD	
Type of reservoir		Pump rooms		
Reservoir size		Type of pump room		
Reservoir condition		Material of enclosure		
Stand height (m)		Condition of enclosure		
DE-ESTABLISHMENT F	ROM SITE TO W		I	

STEP DRAWDOWN TEST DATA PLOT

= Drawdown data. X = Recovery data.

.

LOCALITY

NORTHERN CAPE KAMIESBEES

BOREHOLE NO:

BH 3

DATE TESTED

18/09/2019

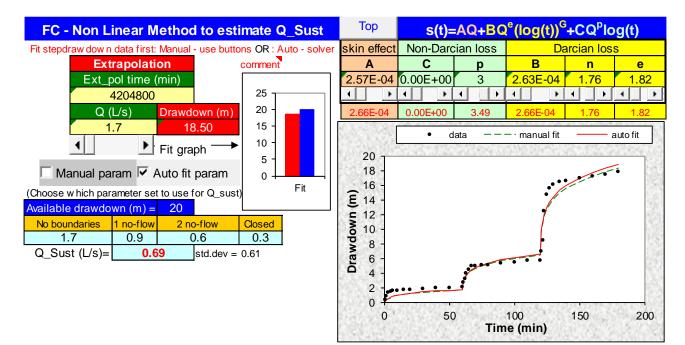
DISCHARGE RATES (Q)

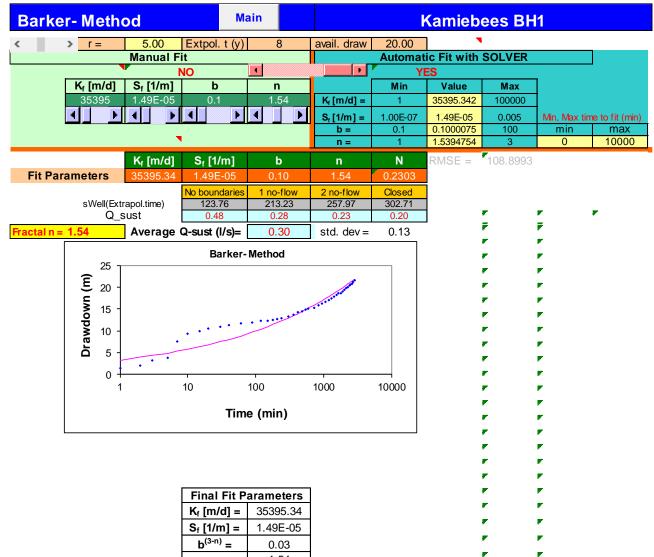
Q1 =	1.04	l/s
Q2 =	2.02	l/s
Q3 =	4.04	l/s
Q4 =	5.70	l/s
Q5 =	0.00	l/s

S.W.L = 10.82 m.b.g.l.

Photo's of boreholes on site

BH2 & 3




BH1

Appendix B: Pumping Test Analysis Results

FC-METHOD	: Estim	atio	n of the su	staina	able yiel	d of	a bore	eho	le			
Kamiebees B	BH1						Main		Deriv	Inflec	tion po	int method
		n time	e in years = (ent	ter)	8	1	420480	00	Extrapo	l.time in	minute	s
			dius $(r_{e}) = (ent$		9.22	•	- 9.22			r,		(e) sheet
			ping test =		3		4.40E-0	03 <		ate 🖣		hange re
s _a (availa		-	sigma_s = (ent	er)	20.0			₹	— Sigr	na_sfro	om risk	Down
	effective r			,	0.16		21.60)	-			aw dow n(m
t(end) and s(end) of pumping test =			2880		21.56	6	End time	e and dr	aw dow	n of test		
			lerivative = (ent	er)	14.1	-	- 14.1		Estimate	e of ave	erage of	max deriv
Av	verage seco	ond de	erivative = (ente	er)	0.1	•	- 0.1		Estimate	e of ave	erage se	econd deriv
Deriv	ative at rad	ial flo	w period = (ente	er)	3.78	•	- 3.78	1	Read fr	om deriv	vative g	raph
					T-early[m ²	/d] =	12.54	1	Aqui. th	nick (m)		20
T and S e	stimates	from	derivatives		T-late [m ²	/d] =	3.36	1	Est. S-	ate =	1	.10E-03
(To obtain c	orrect S-va	alue, u	ise program RP	TSOLV)	S-la	ate =	4.40E-0	03	S-estin	nate cou	uld be w	rong
	ASIC SO											
(Using derivatives +	-			undaries		. 1						long time
(No value	es of T and		necessary)		No bounda		1 no-flo		2 no-	-		ed no-flow
		s١	Well (Extrapol.				116.9		161	.63		295.85
			Q_sust	: (I/s) =	0.90		0.55	5	0.4	40		0.22
					Besto	ase					Wo	orst case
		Ave	rage Q_sust	: (I/s) =	0.46							
		w	ith standard de	viation=	0.29							
(If no information ex	ists about l	bound	aries skip adva	nced so	lution and g	o to f	inal recor	mmen	dation)			
											~	
Coc	ner-J	acc	b metho	bd		Ma	ain 📕		Theis		Coo	per-Jacob
				<u> </u>				_				
Kam	iebees	BH										-
			T(m²/d) =	7	.7			r _e (r	n)=	5.8	2	5.82
	•		S =	3 /8	E-04			Q (I/		3		
			3 -	0.70				Q (1/	5) –	5		
			No boundaries	1 no-	-flow	2 no-	flow	Clos	ed			
	Q_9	sust	1.06	0.	53	0.3	35	0.2	27 i	ncludir	ng influ	ience of bh
	A	۸vg.	Q_sust =	0.	55	std.	dev =	0.3	36			
Г					•							
					•							
					Cooper	-Jaco	do					
	2	5										
	2	~										
	2	0 -										
	Ē											
								/	· .·	•		
		5 -						_	•••			
	ဓ						<u> </u>	•				
	Drawdown (m)				/	· · ·						
	1 Jray	01		• •								
			•	• /								
		5 -	/									
		~										
			_									
		0 崖	-				1					
		1		10		1	00		100	00		10000
					т	ime	(min)					
							-					

z

Recovery Method Kamiebees BH1

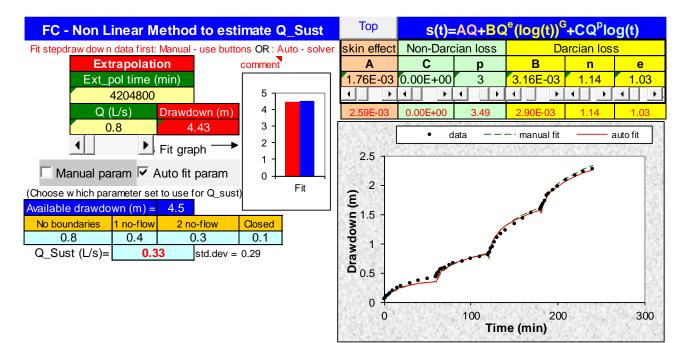
Safe yield =	Volume Pumped				
Sale yielu =	(Days pumped + Days Full Recovery)	_			
	l .				
Pump Rate		L/s			
CDT Duration	3.25	h			
Steps Abstraction	27	m ³			
Pump duration	0.179166667	d			
Full recovery	1200	min			
Full lecovery	0.83	d			
Safe yield	26	m³/d			
	0.30	L/s			

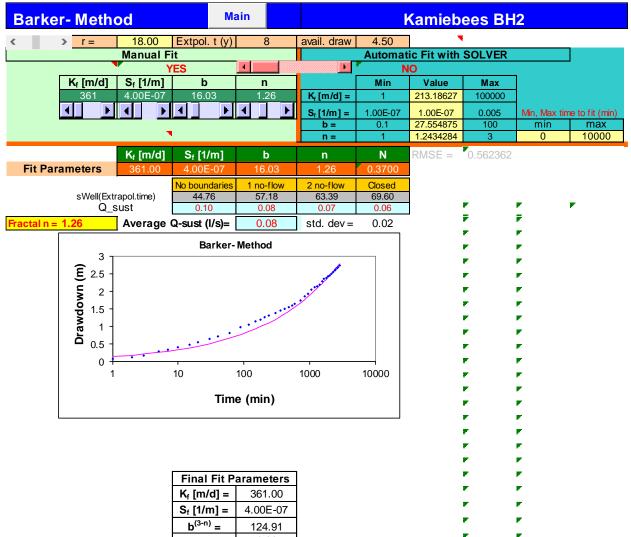
	Summary	Main				KG2			
Applicable	Method	Sustainable yield (l/s)	Std. Dev	Early 1	Г (m²/d)	Late T (m	ո²/d)	S	AD used
	Basic FC	0.52	0.33		3	2.4		4.40E-03	40.0
	Advanced FC								
	FC inflection point								
v	Cooper-Jacob	0.63	0.41			3.3		4.91E-04	40.0
V	FC Non-Linear	0.45	0.40			3.0		5.40E-05	40.0
v	Recovery	0.79		9	.2	2.8			
V	Barker	0.54	0.34	K _f =	1		S _s =	7.07E-04	40.0
	Average Q_sust (I/s)	0.59	0.13	b =	3.35	Fractal dimensi	ion n =	1.94	

Recommended abstraction rate (L/s)	0.60	for 24
Amount of water allowed to be abstracted per month	1555.2	m ³
Amount of water allowed to be abstracted per day	51	m ³
Amount of water allowed to be abstracted per hour	2.2	m ³
Is the water suitable for domestic use (Yes/No)		

for 24	hours	per day	
10f 24	nours	per day	

2.72E-04 2.88


Recommended pump depth below surface (m)	65
Total casing length (m)	70
Blow yield (I/s)	N.A.
Low level pump protection depth (mbgl)	60
Depth of borehole (m)	70
Pre-pumping rest water level (mbgl)	14.83


Management recommendations

Pump borehole at maximum 2.2 m³/h for 24 hours per day

Note: Data extrapolated for 15 years and available drawdown taken as 40 m.

amiebees BH	2				Main	Deriv	Inflect	tion point n	net
	apolation time in	vears - (enter)	8		4204800	-		minutes	
	e borehole radiu		24.75	•	- 24.75	-	. r _e	From r(e) s	she
	(I/s) from pumpin	(2) ()	1		4.40E-03		ate 🗲		
	draw dow n), sig	-	4.5				ma_sfro	· · · · · · · · · · · · · · · · · · ·	Dov
Annual effective recharge (mm) =			0.16		6.10	_		rking draw o	
t(end) and s(end) of pumping test =					2.73			aw dow n of	
Avera	ge maximum deriv	vative = (enter)	2.0	-	- 2.0	Estimat	e of ave	rage of max	x de
Avera	age second deriv	ative = (enter)	0.0	-	- 0.0	Estimat	e of ave	rage secon	nd d
Derivativ	e at radial flow p	period = (enter)	0.58	•	- 0.58	Read fr	om deriv	vative graph	า
			T-early[m ² /c	d] =	27.10	🔪 Aqui. tl	nick (m)	5	
T and Sesti	mates from de	rivatives	T-late [m ² /c	= [k	8.06	Est. S-	late =	2.75E	-04
(To obtain corr	ect S-value, use	program RPTSOLV) S-lat	e =	4.40E-03	S-estin	nate cou	ıld be w ron	g
BAG		N							
ing derivatives + sul			c)		Movimum in	fluonaa of	bounde	rice of long	, tim
-	of T and S are ne		No boundar		1 no-flow		-flow	aries at long Closed n	
		ll (Extrapol.time) :		103	18.70		.91	43.5	
	3110	Q_sust (I/s) =	-		0.33		24	0.1	_
		@_303t (1/3) =	Best ca	60	0.55	0.	24	Worst	
	Avora	ge Q_sust (I/s) =		30			-	Worst	cas
		standard deviation:							
no information exists				to fi	inal racomm	ondation)			
TIO ITTOTTIALIOTT EXISTS	about bouridarie	es skip auvanceu si	olution and gu						
						Co	opor k	acab 2	
ooper-Jaco	ob metho	d	Main		Theis	Со	oper-Ja	acob 2	
ooper-Jaco		d	Main		Theis	Со	oper-Ja	acob 2	
ooper-Jaco amiebees BH	2		Main		Theis				
		0d	Main	r _e (I	Theis m)=	Co 18.91		acob 2 8.91	
	2				m)=				
	2 T(m²/d) =	18.4				18.91			
	2 T(m²/d) = S =	18.4 1.69E-04		Q (I/	m)= /s) =	18.91			
amiebees BH	2 T(m ² /d) = S = No boundaries	18.4 1.69E-04	2 no-flow	Q (I/ Clos	m)= /s) = sed	18.91	1	8.91	
amiebees BH Q_sust	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 2	2 no-flow 0.07	Q (I/ Clos 0.	<mark>m)=</mark> /s) = sed 05 inc	18.91	1	8.91	
amiebees BH Q_sust	2 T(m ² /d) = S = No boundaries	18.4 1.69E-04 1 no-flow 2 0.11 2	2 no-flow	Q (I/ Clos 0.	m)= /s) = sed	18.91	1	8.91	
amiebees BH Q_sust	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 2	2 no-flow 0.07	Q (I/ Clos 0.	<mark>m)=</mark> /s) = sed 05 inc	18.91	1	8.91	
amiebees BH Q_sust	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 2 0.11 5	2 no-flow 0.07 Std. dev =	Q (I/ Clos 0.	<mark>m)=</mark> /s) = sed 05 inc	18.91	1	8.91	
amiebees BH Q_sust	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 2	2 no-flow 0.07 Std. dev =	Q (I/ Clos 0.	<mark>m)=</mark> /s) = sed 05 inc	18.91	1	8.91	
amiebees BH Q_sust	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 2 0.11 5	2 no-flow 0.07 Std. dev =	Q (I/ Clos 0.	<mark>m)=</mark> /s) = sed 05 inc	18.91	1	8.91	
Q_sust Avg.	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 2 0.11 5	2 no-flow 0.07 Std. dev =	Q (I/ Clos 0.	<mark>m)=</mark> /s) = sed 05 inc	18.91	1	8.91	
Q_sust Avg.	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 2 0.11 5	2 no-flow 0.07 Std. dev =	Q (I/ Clos 0.	<mark>m)=</mark> /s) = sed 05 inc	18.91	1	8.91	
Q_sust Avg.	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 2 0.11 5	2 no-flow 0.07 Std. dev =	Q (I/ Clos 0.	<mark>m)=</mark> /s) = sed 05 inc	18.91	1	8.91	
Q_sust Avg.	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 2 0.11 5	2 no-flow 0.07 Std. dev =	Q (I/ Clos 0.	<mark>m)=</mark> /s) = sed 05 inc	18.91	1	8.91	
Q_sust Avg.	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 2 0.11 5	2 no-flow 0.07 Std. dev =	Q (I/ Clos 0.	<mark>m)=</mark> /s) = sed 05 inc	18.91	1	8.91	
Q_sust Avg.	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 2 0.11 5	2 no-flow 0.07 Std. dev =	Q (I/ Clos 0.	<mark>m)=</mark> /s) = sed 05 inc	18.91	1	8.91	
Q_sust Avg.	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 2 0.11 5	2 no-flow 0.07 Std. dev =	Q (I/ Clos 0.	<mark>m)=</mark> /s) = sed 05 inc	18.91	1	8.91	
Q_sust Avg.	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 2 0.11 5	2 no-flow 0.07 Std. dev =	Q (I/ Clos 0.	<mark>m)=</mark> /s) = sed 05 inc	18.91	1	8.91	
Q_sust Q_sust Avg.	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 2 0.11 5	2 no-flow 0.07 Std. dev =	Q (I/ Clos 0.	<mark>m)=</mark> /s) = sed 05 inc	18.91	1	8.91	
Q_sust Q_sust Avg.	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 2 0.11 5	2 no-flow 0.07 Std. dev =	Q (I/ Clos 0.	<mark>m)=</mark> /s) = sed 05 inc	18.91	1	8.91	
Q_sust Q_sust Avg. (m) umopmer 1.5 Q_sust Avg. 1.5 1.5	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 2 0.11 5	2 no-flow 0.07 Std. dev =	Q (I/ Clos 0.	<mark>m)=</mark> /s) = sed 05 inc	18.91	1	8.91	
Q_sust Q_sust Avg.	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 2 0.11 5	2 no-flow 0.07 Std. dev =	Q (I/ Clos 0.	<mark>m)=</mark> /s) = sed 05 inc	18.91	1	8.91	
Q_sust Avg. (m) unopmei 1.5 0.5	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 2 0.11 5	2 no-flow 0.07 Std. dev =	Q (I/ Clos 0.	<mark>m)=</mark> /s) = sed 05 inc	18.91	1	8.91	
Q_sust Avg. (m) unopmerica 1 - 0.5 - 0	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 0.11 0.11 s Cooper-	2 no-flow 0.07 atd. dev = Jacob	Q (I/ Clos 0.	m)= /s) = 05 07	18.91	fluence	8.91	
Q_sust Avg. (m) unopmei 1.5 0.5	2 T(m ² /d) = S = No boundaries 0.22	18.4 1.69E-04 1 no-flow 2 0.11 2 0.11 5	2 no-flow 0.07 Std. dev =	Q (I/ Clos 0.	<mark>m)=</mark> /s) = sed 05 inc	18.91	fluence	8.91	

Tinarritt	arameters
K _f [m/d] =	361.00
S _f [1/m] =	4.00E-07
b ⁽³⁻ⁿ⁾ =	124.91
n =	1.26
b =	16.03
K _f *b ⁽³⁻ⁿ⁾	45091.17

7

E.

Safe yield =

Safe yield =	(Days pumped + Days Full Recovery)	-
Pump Rate		L/s
CDT Duration	3.25	h
Steps Abstraction	27	m ³
Pump duration	0.179166667	d
Full recovery	1200	min
	0.83	d
Safe yield	26	m³/d
	0.30	L/s

Volume Pumped

	Summary		Kamiebees BH2							
Applicable	Method	Sustainable yield (I/s)	Std. Dev	Early T (r	m²/d)	Late T (m	² /d)	S	AD used	
	Basic FC	0.27	0.15	27		8.1		4.40E-03	4.5	
	Advanced FC									
	FC inflection point									
V	Cooper-Jacob	0.11	0.07			18.4		1.69E-04	4.5	
v	FC Non-Linear	0.33	0.29			26.0		2.04E-04	4.5	
V	Recovery	0.19		42.3		15.7				
v	Barker	0.08	0.02	K _f =	361		S _s =	4.00E-07	4.5	
	Average Q_sust (I/s)	0.20	0.10	b =	16.03	Fractal dimension n	=	1.26	=Linear flow	

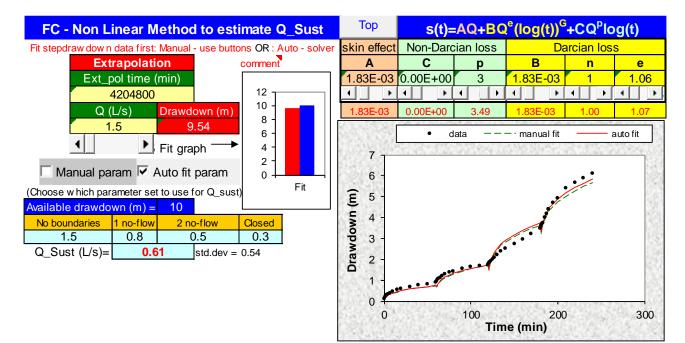
Recommended abstraction rate	0.20	L/s
Maximum amount of water to be abstracted per month	518	m ³
Maximum amount of water to be abstracted per day	17	m ³
Maximum amount of water to be abstracted per hour	0.7	m ³

1.86E-04 Average T & S: 17.48

Recommended pump depth below surface	15	m
Total Casing length	?	m
Reported blow yield	5.6	L/s
Low level pump protection depth	14	mbgl
Depth of borehole	17	m
Pre-pumping rest water level	10.16	mbc

Estimated abstraction by existing windpump with a	0.21	Ave. L/s
60 mm Jooste cylinder yielding ±770 L/h	25%	Ave. Wind/a
	1 656	Ave. m ³ /a
	5	$\Delta v_{P} m^{3}/d$

Discussion & Management Recommendations


Kamiebees BH2 can be utilise at maximum rate of 0.7 $\ensuremath{\text{m}^3/\text{h}}$ with the pump at 15 m below ground level.

Based on Drought Index of 3.8 years for the Quaternary Catchment F30A, the data were extrapolated for 8 years.

Available drawdown concervatively taken as 4.5 m and allowance was made for pumping 0.4L/s form BH1 and 0.2 L/s from BH3.

Note: This borehole has collapsed and borehole BH3, which is 9 m away on the same fault zone, should rather be used for abstraction.

C-METHOD : I	3			Main	Deriv	Inflec	tion point me
	apolation time in y	vears - (enter)	8	4204800	-		minutes
	e borehole radius		24.75	4204800 24.75	Extrapo		From r(e) she
			1	4.40E-03		ate 🗲	Change r
	Q (l/s) from pumping test = , (available draw dow n), sigma_s = (enter)			4.402-03	-	na_s fro	
	ective recharge (10.0 0.16	11.60		_	orking draw dov
	s(end) of pumping		2880	2.73			raw dow n of te
	ge maximum deriv	-	2.0		-		erage of max d
	ge second deriva	()	0.0				erage second of
	e at radial flow p		0.58				vative graph
Derivativ			T-early[m ² /d]	1	Aqui. th		
T and Sesti	mates from de	rivatives	T-late $[m^2/d]$:		Est. S-I		2.75E-04
		program RPTSOLV)					uld be w rong
(10 001011 0011					0.00111		
-	IC SOLUTION						
ng derivatives + sub	-		3)	Maximum ir			aries at long tin
(No values o	f T and S are neo	• /	No boundaries		2 no-		Closed no-f
	sWel	l (Extrapol.time) =	15.17	21.38	27.	.59	46.22
		Q_sust (I/s) =	0.76	0.54	0.4	42	0.25
			Best case		-		Worst ca
	Averag	ge Q_sust (I/s) =	0.46				
	-	standard deviation=		1			
o information exists	about boundarie	s skip advanced so		final recomm	nendation)		
	1		Main	Thois	Co	oper-Ja	acob 2
ooper-Jaco	ob metho	d	Main	Theis	Co	oper-Ja	acob 2
		d	Main	Theis	Co	oper-Ja	acob 2
ooper-Jaco miebees BH	3					-	
		d		Theis	18.91	-	acob 2 8.91
	3 T(m²/d) =	18.4	r _e	e (m)=		-	
	3 T(m²/d) =		r _e		18.91	-	
	3 T(m²/d) = S =	18.4 1.69E-04	r _e Q	e (m)= (l/s) =	18.91	-	
miebees BH	3 T(m²/d) = S = No boundaries	18.4 1.69E-04 1 no-flow 2	no-flow C	g (m)= (I/S) = Xosed	18.91	1	8.91
Q_sust	3 T(m ² /d) = S = <u>No boundaries</u> 0.74	18.4 1.69E-04 1 no-flow 2 0.37	no-flow (0.24	(m)= (l/s) = Closed 0.18 ind	18.91	1	8.91
Q_sust	3 T(m²/d) = S = No boundaries	18.4 1.69E-04 1 no-flow 2 0.37 2	no-flow (0.24	g (m)= (I/S) = Xosed	18.91	1	8.91
Q_sust	3 T(m ² /d) = S = <u>No boundaries</u> 0.74	18.4 1.69E-04 1 no-flow 2 0.37	no-flow (0.24	(m)= (l/s) = Closed 0.18 ind	18.91	1	8.91
Q_sust	3 T(m ² /d) = S = No boundaries 0.74	18.4 1.69E-04 1 no-flow 2 0.37 0.38 0.38 s	no-flow C 0.24 td. dev =	(m)= (l/s) = Closed 0.18 ind	18.91	1	8.91
Q_sust	3 T(m ² /d) = S = No boundaries 0.74	18.4 1.69E-04 1 no-flow 2 0.37	no-flow C 0.24 td. dev =	(m)= (l/s) = Closed 0.18 ind	18.91	1	8.91
Q_sust Avg.	3 T(m ² /d) = S = No boundaries 0.74	18.4 1.69E-04 1 no-flow 2 0.37 0.38 0.38 s	no-flow C 0.24 td. dev =	(m)= (l/s) = Closed 0.18 ind	18.91	1	8.91
Q_sust	3 T(m ² /d) = S = No boundaries 0.74	18.4 1.69E-04 1 no-flow 2 0.37 0.38 0.38 s	no-flow C 0.24 td. dev =	(m)= (l/s) = Closed 0.18 ind	18.91	1	8.91
Q_sust Avg.	3 T(m ² /d) = S = No boundaries 0.74	18.4 1.69E-04 1 no-flow 2 0.37 0.38 0.38 s	no-flow C 0.24 td. dev =	(m)= (l/s) = Closed 0.18 ind	18.91	1	8.91
Q_sust Avg.	3 T(m ² /d) = S = No boundaries 0.74	18.4 1.69E-04 1 no-flow 2 0.37 0.38 0.38 s	no-flow C 0.24 td. dev =	(m)= (l/s) = Closed 0.18 ind	18.91	1	8.91
Q_sust Avg.	3 T(m ² /d) = S = No boundaries 0.74	18.4 1.69E-04 1 no-flow 2 0.37 0.38 0.38 s	no-flow C 0.24 td. dev =	(m)= (l/s) = Closed 0.18 ind	18.91	1	8.91
Q_sust Avg.	3 T(m ² /d) = S = No boundaries 0.74	18.4 1.69E-04 1 no-flow 2 0.37 0.38 0.38 s	no-flow C 0.24 td. dev =	(m)= (l/s) = Closed 0.18 ind	18.91	1	8.91
Q_sust Avg.	3 T(m ² /d) = S = No boundaries 0.74	18.4 1.69E-04 1 no-flow 2 0.37 0.38 0.38 s	no-flow C 0.24 td. dev =	(m)= (l/s) = Closed 0.18 ind	18.91	1	8.91
Q_sust Avg.	3 T(m ² /d) = S = No boundaries 0.74	18.4 1.69E-04 1 no-flow 2 0.37 0.38 0.38 s	no-flow C 0.24 td. dev =	(m)= (l/s) = Closed 0.18 ind	18.91	1	8.91
Q_sust Avg.	3 T(m ² /d) = S = No boundaries 0.74	18.4 1.69E-04 1 no-flow 2 0.37 0.38 0.38 s	no-flow C 0.24 td. dev =	(m)= (l/s) = Closed 0.18 ind	18.91	1	8.91
Q_sust Avg.	3 T(m ² /d) = S = No boundaries 0.74	18.4 1.69E-04 1 no-flow 2 0.37 0.38 0.38 s	no-flow C 0.24 td. dev =	(m)= (l/s) = Closed 0.18 ind	18.91	1	8.91
Q_sust Q_sust Avg.	3 T(m ² /d) = S = <u>No boundaries</u> 0.74	18.4 1.69E-04 1 no-flow 2 0.37 0.38 0.38 s	no-flow C 0.24 td. dev =	(m)= (l/s) = Closed 0.18 ind	18.91	1	8.91
Q_sust Avg.	3 T(m ² /d) = S = <u>No boundaries</u> 0.74	18.4 1.69E-04 1 no-flow 2 0.37 0.38 0.38 s	no-flow C 0.24 td. dev =	(m)= (l/s) = Closed 0.18 ind	18.91	1	8.91
Q_sust Q_sust Avg. 3 2.5 - (E) uxopment 1.5 - E D 1 -	3 T(m ² /d) = S = <u>No boundaries</u> 0.74	18.4 1.69E-04 1 no-flow 2 0.37 0.38 0.38 s	no-flow C 0.24 td. dev =	(m)= (l/s) = Closed 0.18 ind	18.91	1	8.91
Q_sust Avg.	3 T(m ² /d) = S = <u>No boundaries</u> 0.74	18.4 1.69E-04 1 no-flow 2 0.37 0.38 0.38 s	no-flow C 0.24 td. dev =	(m)= (l/s) = Closed 0.18 ind	18.91	1	8.91
Q_sust Avg. 3 2.5 - (u) unopneuro 1.5 - 1 - 0.5 -	3 T(m ² /d) = S = <u>No boundaries</u> 0.74	18.4 1.69E-04 1 no-flow 2 0.37 0.38 0.38 s	no-flow C 0.24 td. dev =	(m)= (l/s) = Closed 0.18 ind	18.91	1	8.91
Q_sust Avg. 3 2.5 - () umopment 1.5 - 0 -	3 T(m ² /d) = S = <u>No boundaries</u> 0.74	18.4 1.69E-04 1 no-flow 2 0.37 0 0.38 s Cooper	no-flow C 0.24 td. dev = Jacob	(I/S) = (I/S)	18.91	luence	8.91
Q_sust Avg. 3 2.5 - (u) unopneuro 1.5 - 1 - 0.5 -	3 T(m ² /d) = S = <u>No boundaries</u> 0.74	18.4 1.69E-04 1 no-flow 2 0.37 0.38 0.38 s	no-flow C 0.24 td. dev =	(m)= (l/s) = Closed 0.18 ind	18.91	luence	8.91

Barke	r- Meth	od	N	lain	Kamiebees BH3			3		
<	> r=	18.00	Extpol. t (y)	8	avail. draw	10.00	1 🔹)		
		Manual F					ic Fit with	SOLVER		
	•		'ES	•			0	001711		J
	K _f [m/d]	S _f [1/m]	b			Min	Value	Max	I	
	361	4.00E-07	16.03	1.26	K _f [m/d] =	1	213.18627	100000		
	A F				S _f [1/m] =	1.00E-07	1.00E-07	0.005	Min Mox tim	ne to fit (min)
					b =	0.1	27.554875	100	min	max
			•		n =	1	1.2434284	3	0	10000
		K _f [m/d]	S _f [1/m]	b	n	N	RMSE =	0.562362		
Fit Par	rameters	361.00	4.00E-07	16.03	1.26	0.3700				
			No boundaries		2 no-flow	Closed				
		rapol.time)	47.44	59.86	66.07	72.28		•		
		sust	0.21	0.17	0.15	0.14	J	F	- 	
Fractal n =	1.26	Average	Q-sust (I/s)=	0.17	std. dev =	0.03			•	
	- 3 - 2.5 - 2.1 - 1 - 1 - 2.0 - 5 - 0 - 1 - 1		· · · · · · · · · · · · · · · · · · ·	- Method	1000	10000			* * * * * * * * * * * *	
			$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	Parameters 361.00 4.00E-07 124.91 1.26 16.03 45091.17						

Safe yield =

Safe yield =	(Days pumped + Days Full Recovery)	-
Pump Rate		L/s
CDT Duration	4	h
Steps Abstraction	46	m ³
Pump duration	0.179166667	d
Full recovery	1000	min
	0.69	d
Safe yield	53	m³/d
	0.61	L/s

Volume Pumped

	Summary	Main	ain Kamiebees BH3						
Applicable	Method	Sustainable yield (I/s)	Std. Dev	Early T (I	m²/d)	Late T (m	² /d)	S	AD used
v	Basic FC	0.46	0.22	27		8.1		4.40E-03	10.0
	Advanced FC								
	FC inflection point								
V	Cooper-Jacob	0.38	0.25			18.4		1.69E-04	10.0
v	FC Non-Linear	0.61	0.54			30.0		1.69E-04	10.0
V	Recovery	0.19		42.3		15.7			
V	Barker	0.17	0.03	K _f =	361		S _s =	4.00E-07	10.0
	Average Q_sust (I/s)	0.36	0.19	b =	16.03	Fractal dimension n	=	1.26	=Linear flow

Recommended abstraction rate	0.30	L/s
Maximum amount of water to be abstracted per month	778	m ³
Maximum amount of water to be abstracted per day	26	m ³
Maximum amount of water to be abstracted per hour	1.1	m ³

Average T & S: 18.81 1.69E-04

Recommended pump depth below surface	27	m
Total Casing length	?	m
Reported blow yield	5.6	L/s
Low level pump protection depth	25	mbgl
Depth of borehole	30	m
Pre-pumping rest water level	10.56	mbc

Estimated abstraction by existing windpump with a	0.21	Ave. L/s
60 mm Jooste cylinder yielding ±770 L/h	25%	Ave. Wind/a
	1 656	Ave. m ³ /a
	5	Ave m ³ /d

Discussion & Management Recommendations

Kamiebees BH3 can be utilise at maximum rate of 1 $\ensuremath{\text{m}^3/\text{h}}$ with the pump at 27 m below ground level. Based on Drought Index of 3.8 years for the Quaternary Catchment F30A, the data were extrapolated for 8 years. Available drawdown concervatively taken as 10 m and allowance was made for pumping 0.4L/s form BH1 and 0.2 L/s from BH2 CDT results of BH2, which is 9 m away on the same fracture zone, was used for the yield analysis.

Appendix C: Laboratory Water Quality Reports

[007465/19], [2019/10/09]

Certificate of Analysis

Project details

Customer Details

Quotation number:	QU103742
Order number:	113330
Company name:	AB PUMPS
Contact address:	PRIVATE BAG X39, BEACON BAY, EAST LONDON, 5205
Contact person:	AILENE VAN NIEKERK

Sampling Details

Sampled by:	CUSTOMER
Sampled date:	2019/09/20

Sample Details

Sample type(s):	WATER SAMPLES
Date received:	2019/09/26
Delivered by:	COURIER SERVICE

Report Details

Testing commenced:	2019/09/26
Testing completed:	2019/10/08
Report date:	2019/10/09
Our reference:	007465/19

Analytical Results

Methods	Determinands	Units	017974/19
			P2239, BH01 KAMIESBEES 09:00 20.09.19
Chemical			
85	Dissolved Calcium	mg Ca/ł	235
85	Potassium	mg K/ł	11.0
85	Dissolved Magnesium	mg Mg/ℓ	102
84	Sodium	mg Na/ł	504
83A	Dissolved Aluminium	µg Al∕ℓ	2.55
83A	Dissolved Arsenic	µg As/ℓ	0.44
83A	Dissolved Boron	µg B/ℓ	714
83A	Dissolved Barium	µg Ba∕ℓ	35
83A	Dissolved Cadmium	µg Cd/ℓ	0.02
83A	Dissolved Copper	µg Cu/ł	0.98
83A	Dissolved Iron	µg Fe/ℓ	9.46
83A	Dissolved Mercury	µg Hg/ℓ	0.94
83A	Dissolved Manganese	µg Mn/ℓ	4.39
83A	Dissolved Nickel	µg Ni/ℓ	1.21
83A	Dissolved Lead	µg Pb/ℓ	0.04
83A	Dissolved Antimony	µg Sb/ℓ	0.43
83A	Dissolved Selenium	µg Se/ł	5.28
83A	Dissolved Uranium	μg U/ł	8.53
83A	Dissolved Zinc	µg Zn/ℓ	7.38
83A	Total Chromium	μg Cr/ł	41
83A	Total Iron	µg Fe/ℓ	422
10G	Total Alkalinity	mg CaCO₃/ℓ	251
16G	Chloride	mg Cl/ł	831
-	Cyanide*	µg CN/ℓ	20
48	Colour*	mg Pt-Co/ł	<1
2A	Electrical Conductivity at 25°C	mS/m	364
18G	Fluoride	mg F/ł	2.68

Methods	Determinands	Units	017974/19	
			P2239, BH01 KAMIESBEES 09:00 20.09.19	
Chemical				
64G	Ammonia	mg N/ł	0.18	
65Gc	Nitrate	mg N/ł	15.8	
65Gb	Nitrite	mg N/ł	<0.01	
-	Combined Nitrate + Nitrite (sum of Ratios)*	-	1.4	
4	Turbidity	NTU	1.2	
1A	pH at 25°C	pH units	7.4	
67G	Sulphate	mg SO₄/ℓ	599	
41	Total Dissolved Solids at 180°C	mg/ł	2428	
Microbiolo	gical			
31	E.coli	colonies/100mł	0	
31	Faecal Coliforms	colonies/100mł	0	
31	Total Coliforms	colonies/100mł	0	

Refer to the "Notes" section at the end of this report for further explanations.

Where the laboratory detection limit for a test is higher than the required specification limit, the raw data is reviewed and the detection limit highlighted in bold font if outside of specification.

Specific Observations

Results that appear in bold do not meet the specification limits in Appendix 2 of this report.

Quality Assurance

Technical signatories

Notes to this report

Limitations

This report shall not be reproduced except in full without prior written approval of the laboratory. Results in this report relate only to the samples as taken, and the condition received by the laboratory.

Any opinions and interpretations expressed herein are outside the scope of SANAS accreditation. The decision rule applicable to this laboratory is available on request.

Sample preparation may require filtration, dilution, digestion or similar. Final results are reported accordingly. Customers to contact Talbot Laboratories for further information.

Uncertainty of measurement

Talbot Laboratories' Uncertainty of Measurement (UoM) values are:

- Identified for relevant tests in the attached Appendix.
- Calculated as a percentage of the respective results.
- Applicable to total, dissolved and acid soluble metals for ICP element analyses.
- Available upon request for microbiological results.
- Available upon request for subcontracted tests.

Analysis explanatory notes

Tests may be marked as follows:

^	Tests conducted at our Port Elizabeth satellite laboratory.
*	Tests not included in our Schedule of Accreditation and therefore that are not SANAS accredited.
#	Tests that have been sub-contracted to a peer laboratory.
NR	Not required -shown, for example, where the schedule of analysis varied between samples.
σ	Field sampling point on-site results.
а	Testing has deviated from Method.

Appendix 1: Uncertainty of Measurement (UoM)

Determinands	Method No	Uncertainty of Measurement (%)	Determinands	Method No	Uncertainty of Measurement (%)
Alkalinity (Total)	10	± 3.49	Magnesium (OES)	85	± 5.38
Alkalinity (Total)	10G	± 4.39	Mercury (ICP-MS)	83A	± 16.32
Ammonia	64G	± 6.29	Mercury (ICP-OES)	86	± 10.54
Aluminium (ICP-MS)	83A	± 20.62	20.62 Molybdenum (ICP-MS)		± 11.08
Aluminium (ICP-OES)	87	± 8.09	Molybdenum (ICP-OES)	87	± 15.20
Antimony (ICP-MS)	83A	± 17.73	Nickel (ICP-MS)	83A	± 10.00
Antimony (ICP-OES)	87	± 30.16	Nickel (ICP-OES)	87	± 8.06
Arsenic (ICP-MS)	83A	± 12.04	Nitrate/Nitrite	65Ga	± 12.55
Arsenic (ICP-OES)	87	± 20.17	Nitrite	65Gb	± 12.83
Barium (ICP-MS)	83A	± 12.29	Nitrate	65Gc	± 12.55
Barium (ICP-OES)	87	± 10.25	Oxygen Absorbed	39	± 6.37
Beryllium (ICP-MS)	83A	± 23.10	Potassium (ICP-OES)	85	± 15.20
Beryllium (ICP-OES)	87	± 7.96	Orthophosphate	66G	± 11.76
Boron (ICP-MS)	83A	± 24.83	Phosphate (Total)	90	± 9.16
Boron (ICP-OES)	87	± 17.33	pH Value 25°C	1A	± 1.22
Cadmium (ICP-MS)	83A	± 9.59	Selenium (ICP-MS)	83A	± 21.40
Cadmium (ICP-OES)	87	± 7.69	Selenium (ICP-OES)	88	± 31.56
Calcium (ICP-OES)	85	± 5.09	Silver (ICP-MS)	83A	± 11.35
Chromium (ICP-MS)	83A	± 8.45	Sodium (ICP-OES)	84	± 8.99
Chromium (ICP-OES)	87	± 8.13	Strontium (ICP-MS)	83A	± 10.55
Cobalt (ICP-MS)	83A	± 8.39	Strontium (ICP-OES)	87	± 8.29
Cobalt (ICP-OES)	87	± 7.83	Sulphate	67G	± 6.96
Copper (ICP-MS)	83A	± 8.36	Suspended Solids	5	± 3.72
Copper (ICP-OES)	87	± 7.77	Thallium (ICP-MS)	83A	± 12.51
Chemical Oxygen	3	± 16.04	Thallium (ICP-OES)	87	± 8.57
Demand	160	. 2.50	Tin (ICP-MS)	83A	± 12.17
Chloride	16G	± 3.56	Tin (ICP-OES)	87	± 12.39
Electrical Conductivity	2A	± 2.87	Titanium (ICP-OES)	87	± 7.20
Fluoride	18G	± 17.67	Total Dissolved Solids	41	± 1.29
Hexavalent Chromium	68G	± 5.36	Total Solids at 105°C	59	± 0.59
Iron (ICP-MS)	83A	± 14.03	Turbidity	4	± 4.60
Iron (ICP-OES)	87	± 7.83 ± 10.64	Uranium (ICP-MS)	83A	± 12.13
Lead (ICP-MS)	83A		Uranium (ICP-OES)	87	± 7.26
Lead (ICP-OES)	87	± 8.18	Vanadium (ICP-MS)	83A	± 10.17
()	83A	± 20.65	Vanadium (ICP-OES)	87	± 7.18
Lithium (ICP-OES)	87	± 6.79	Zinc (ICP-MS)	83A	± 22.86
Manganese (ICP-MS) Manganese (ICP-OES)	83A 87	± 10.71 ± 8.01	Zinc (ICP-OES)	87	± 7.41

Determinands	Method No	Uncertainty of Measurement (%)	Determinands	Method No	Uncertainty of Measurement (%)
Total Hydrocarbons	101	± 22.76	Tetrachloroethylene	100	± 17.04
Vinyl Chloride	100	± 23.42	1,1,1,2- Tetrachloroethane	100	± 21.13
Bromomethane	100	± 22.89	Chlorobenzene	100	± 16.08
Ethyl Chloride	100	± 23.25			± 10.00
1,1-Dichloroethylene	100	± 20.00	m,p-Xylene (BTEX)	100	± 20.00
Trans1,2- Dichlororethylene	100	± 19.22	Styrene	100	± 18.91
Tert-Butylmethyl Ether (MTBE)	100	± 22.90	Bromoform (THM)	100	± 19.74
1,1-Dichloroethane	100	± 17.24	- 1,1,2,2- Tetrachloroethane	100	± 24.71
Cis-1,2-Dichloroethylene	100	± 22.06	o-Xylene (BTEX)	100	± 23.70
Chloroform (THM)	100	± 18.67	1,2,3-Trichloropropane	100	± 22.64
2,2-Dichloropropane	100	± 19.27	Isopropylbenzene	100	± 21.01
1,2-Dichloroethane	100	± 15.27	Bromobenzene		± 19.61
1,1,1-Trichloroethane	100	± 21.72	± 21.72 n-Propylbenzene		± 24.17
1,1-Dichloropropene	100	± 20.33 2-Chlorotoluene		100	± 22.92
Carbon Tetrachloride	100	± 19.86	19.86 4-Chlorotoluene		± 22.11
Benzene (BTEX)	100	± 22.33	1,3,5-Trimethylbenzene	100	± 18.19
Dibromomethane	100	± 18.63	Tert-Butylbenzene	100	± 18.74
1,2-Dichloropropane	100	± 18.26	1,2,4-Trimethylbenzene	100	± 24.08
Trichloroethylene	100	± 21.76	Sec-Butylbenzene	100	± 20.11
Bromodichloromethane (THM)	100	± 15.31	1,3-Dichlorobenzene	100	± 24.31
Trans-1.3-	100	± 14.50	1,4-Dichlorobenzene	100	± 24.31
Dichloropropene			1,2-Dichlorobenzene	100	± 20.31
Cis-1,3-Dichloropropene	100	± 15.77	n-Butylbenzene	100	± 14.50
1,1,2-Trichloroethane	100	± 16.46	1,2,4-Trichlorobenzene	100	± 18.90
Toluene (BTEX)	100	± 24.36	Naphthalene	100	± 23.66
1,3-Dichloropropane	100	± 15.78	Hexachlorobutadiene	100	± 18.39
Dibromochloromethane (THM)	100	± 18.00	1,2,3-Trichlorobenzene	100	± 24.70
1,2-Dibromoethane	100	± 14.72			

Appendix 2: Specifications - SANS 241-1:2015 RECOMMENDED LIMITS

Reported Determinands	Limits	Reported Determinands	Limits	
E.coli	0 Count per 100mł	Zinc	≤5000 µg/l (≤5 mg/ℓ)	
F.coli	0 Count per 100mł	Antimony	≤20 µg/ℓ (≤0.02 mg/ℓ)	
Cryptosporidium species	yptosporidium species Not Detected		≤10 µg/ℓ (≤0.01 mg/ℓ)	
Giardia species	Not Detected	Barium	≤700 µg/ℓ (≤0.7 mg/ℓ)	
Total Coliforms	≤10 Count per 100mℓ	Boron	≤2400 µg/ℓ (≤2.4 mg/ℓ)	
Standard Plate Count	≤1000 Count per 1mł	Cadmium	≤3 µg/ℓ (≤0.003 mg/ℓ)	
Somatic Coliphages	Not Detected	Total Chromium	≤50 µg/ℓ (≤0.05 mg/ℓ)	
Cytopathogenic viruses	Not detected	Copper	≤2000 µg/ℓ (≤2 mg/ℓ)	
Enteric Virus (Sub#)	Not Detected	Cyanide	≤200 µg/ℓ (≤0.2 mg/ℓ)	
Colour	≤15 mg/ℓ Pt-Co	Iron	Chronic: ≤ 2000 µg/ℓ (≤2 mg/ℓ)	
Electrical Conductivity Total Dissolved Solids at	≤170 mS/m	Iron	Aesthetic: ≤ 300 µg/ℓ (≤0.3 mg/ℓ)	
180°C	.		≤10 µg/ℓ (≤0.01 mg/ℓ)	
Turbidity	rbidity Operational ≤1 NTU		Chronic: ≤ 400 µg/ℓ (≤0.4	
Turbidity	Aesthetic ≤5 NTU		mg/ℓ)	
рН	≥ 5 to ≤ 9.7	Manganese	Aesthetic: ≤100 µg/ℓ (≤0.1 mg/ℓ)	
Odour	Inoffensive	Mercury	≤6 µg/ℓ (≤0.006 mg/ℓ)	
Free Chlorine	≤5 mg/ℓ	Nickel	≤70 µg/ℓ (≤0.07 mg/ℓ)	
Monochloramine	≤3000 µg/ℓ (≤3 mg/ℓ)	Selenium	≤40 µg/ℓ (≤0.04 mg/ℓ)	
Nitrate	≤11 mg/ℓ	Uranium	≤30 µg/ℓ (≤0.03 mg/ℓ)	
Nitrite	≤0.9 mg/ ℓ	Aluminium	≤300 µg/ℓ (≤0.3 mg/ℓ)	
Combined Nitrate plus Nitrite (sum of Ratios)	≤1	Total Organic Carbon	≤10 mg/ℓ	
Sulphate	Acute: ≤ 500 mg/ℓ	Chloroform	≤300 µg/ℓ (≤0.3 mg/ℓ)	
Sulphate	Aesthetic: ≤ 250 mg/ℓ	Bromoform	≤100 µg/ℓ (≤0.1 mg/ℓ)	
Fluoride	≤1500 µg/ℓ (≤1.5 mg/ℓ)	Dibromochloromethane	≤100 µg/ℓ (≤0.1 mg/ℓ)	
Ammonia	≤1.5 mg/ℓ	Bromodichloromethane	≤60 µg/ℓ (≤0.06 mg/ℓ)	
Chloride	≤ 300 mg/ℓ	Trihalomethanes Ratio	≤1	
Sodium	≤200 mg/ℓ	Microcystins	≤1 µg/ł	
	· · ···	Phenols	≤10 µg/ℓ (≤0.01 mg/ℓ)	

Appendix D: Impact Assessment Methodology

The assessment of impacts was based on specialists' expertise, SRK's professional judgement, field observations and desk-top analysis.

The significance of potential impacts that may result from the proposed project was determined in order to assist decision-makers (typically by a designated competent authority or state agency, but in some instances, the applicant).

The **significance** of an impact is defined as a combination of the **consequence** of the impact occurring and the **probability** that the impact will occur.

The criteria used to determine impact consequence are presented in the table below.

Rating	Definition of Rating	Score				
A. Extent-	A. Extent- the area (distance) over which the impact will be experienced					
Local	Confined to project or study area or part thereof (e.g. the development site and immediate surrounds)	1				
Regional	The region (e.g. Municipality or Quaternary catchment)	2				
(Inter) national	Nationally or beyond					
-	 y the magnitude of the impact in relation to the extent of the impact and sensitivity of the receiving environ account the degree to which the impact may cause irreplaceable loss of resources 	onment,				
Low	Site-specific and wider natural and/or social functions and processes are negligibly altered	1				
Medium	Site-specific and wider natural and/or social functions and processes continue albeit in a modified way	2				
High	Site-specific and wider natural and/or social functions or processes are severely altered	3				
C. Duration	n– the timeframe over which the impact will be experienced and its reversibility					
Short- term	Up to 2 years and reversible	1				
Medium- term	2 to 15 years and reversible	2				
Long- term	More than 15 years and irreversible	3				

 Table 12-1:
 Criteria used to determine the consequence of the impact

The combined score of these three criteria corresponds to a **Consequence Rating**, as follows:

 Table 12-2:
 Method used to determine the consequence score

Combined Score (A+B+C)	3 – 4	5	6	7	8 – 9
Consequence Rating	Very low	Low	Medium	High	Very high

Once the consequence was derived, the probability of the impact occurring was considered, using the probability classifications presented in the table below.

Table 12-3: Probability classification

Probability- the likelihood of the impact occurring			
Improbable	< 40% chance of occurring		
Possible	40% - 70% chance of occurring		
Probable	> 70% - 90% chance of occurring		
Definite	> 90% chance of occurring		

The overall **significance** of impacts was determined by considering consequence and probability using the rating system prescribed in the table below.

		Probability					
		Probable	Definite				
e	Very Low	INSIGNIFICANT	INSIGNIFICANT	VERY LOW	VERY LOW		
ence	Low	VERY LOW	VERY LOW	LOW	LOW		
equ	Medium	LOW	LOW	MEDIUM	MEDIUM		
Consequence	High	MEDIUM	MEDIUM	HIGH	HIGH		
	Very High	HIGH	HIGH	VERY HIGH	VERY HIGH		

Table 12-4: Impact significance ratings

Finally, the impacts were also considered in terms of their status (positive or negative impact) and the confidence in the ascribed impact significance rating. The prescribed system for considering impacts status and confidence (in assessment) is laid out in the table below.

Table 12-5: Impact status and confidence classification

Status of impact	
Indication whether the impact is adverse (negative) or beneficial	+ ve (positive – a 'benefit')
(positive).	– ve (negative – a 'cost')
Confidence of assessment	
The degree of confidence in predictions based on available information, SRK's judgment and/or specialist knowledge.	Low
	Medium
	High

The impact significance rating should be considered by authorities in their decision-making process based on the implications of ratings ascribed below:

- **INSIGNIFICANT**: the potential impact is negligible and **will not** have an influence on the decision regarding the proposed activity/development.
- **VERY LOW**: the potential impact is very small and **should not** have any meaningful influence on the decision regarding the proposed activity/development.
- **LOW**: the potential impact **may not** have any meaningful influence on the decision regarding the proposed activity/development.
- **MEDIUM**: the potential impact **should** influence the decision regarding the proposed activity/development.
- **HIGH**: the potential impact **will** affect the decision regarding the proposed activity/development.
- VERY HIGH: The proposed activity should only be approved under special circumstances.

Practicable mitigation and optimisation measures are recommended, and impacts are rated in the prescribed way both without and with the assumed effective implementation of mitigation and optimisation measures. Mitigation and optimisation measures are either:

- Essential: measures that must be implemented and are non-negotiable; and
- **Best Practice:** recommended to comply with best practice, with adoption dependent on the proponent's risk profile and commitment to adhere to best practice, and which must be shown to have been considered and sound reasons provided by the applicant if not implemented.