MINING AND EXPLORATION HYDROLOGY

121st Annual Meeting
American Exploration and Mining Association
November 30 – December 4, 2015
Spokane Convention Center, Spokane, WA USA

Mike Hardy, PE, PG, WRS
INTEGRATED APPROACH TO WATER RESOURCE CHARACTERIZATION FOR MINERAL EXPLORATION PROJECTS
THE MINING SEQUENCE

exploration development operations closure
Early exploration...
Advanced exploration...
Essential Natural Resources for a Mine

Ore

Water

Land

$
Mine Development

- Increasingly complex process
 - Changing federal, state and local environmental regulations
- Mine development/operation projects carry potential long-term environmental liabilities
- Every aspect of the mine development process must be considered in tandem
- Plan and design for closure
 - Requires comprehensive characterization and representative data sets
 - Hydrological characterization
 - Geochemical characterization
 - Geotechnical characterization

“*It’s the economy stupid!*”
Characterization/Baseline Studies for NEPA

- Jurisdictional Determinations for Waters of the U.S.
- Noxious Weeds, Invasive and Non-Native Species
- Cultural and Native American Resources/Values
- Surface Water and Groundwater Resources
- Minerals and Paleontological Resources
- Threatened and Endangered Species
- Social and Economic Values
- Wastes, Hazardous or Solid
- Human Health and Safety
- Land Use Authorization
- Special Status Species
- Grazing Management
- Climate/meteorology
- Visual Resources
- Migratory Birds
- Wilderness
- Air Quality
- Recreation
- Vegetation
- Soils

Long-lead items
Past experience has shown that:

- The development of water resource data is an extensive, costly and most time consuming endeavor

- To optimize the water resource characterization program, mining companies should be advised to collect characterization and baseline water resources data during exploration activities

- Data collection methods must be accepted/defensible with BLM, EPA and NDEP

* Data collection methods and water resource monitoring, management and mitigation (3M) plans must also be acceptable/defensible with NDWR, local government, and stakeholders per NRS 533.353
Program Design

• Designed to *piggy-back* with advanced exploration stage of mine development process
 • Reduce costs associated with hydrogeological, geochemical and geotechnical characterization programs
 • Streamline the planning, design and permitting phases of the mine development process

• **Must follow current federal, state and local statutes, codes, regulations, ordinances and policies**

• **Utilize accepted/defensible data collection, data management and analytical methods**
 • Only collect data sets that are necessary to support mine development (exploration, planning, design, permitting) mining operations, and mine closure
 • Optimize collection and quality of data required for permitting and compliance

• **Utilize state of the art software to process representative data sets**
WATER RIGHTS: where hydrologic science meets water law

- Mine water demand vs. availability
- Dewatering (consumptive vs. non-consumptive)
- Unappropriated water available?
 - Hydrographic Area (Basin) status
 - Perennial yield vs. committed water rights
 - Basin study vs. purchase/lease of existing rights
 - Water rights database
 - Pumpage inventories
 - Crop inventories

NDWR, 2015
BASIN-SCALE CHARACTERIZATION

- Climate
- Land cover
 - LandSAT
- Geology
 - Geophysics
- Hydrology
- Hydrogeology
Precipitation

• Models are sensitive to simulated precipitation distribution (spatial and temporal)
 – Multiple data sets and robust period of record often necessary
Evaporation/Evapotranspiration (ET)

- Models are sensitive to simulated ET distribution (spatial and temporal)
 - Multiple data sets and robust period of record often necessary
Precipitation and Evaporation

- Statistical relationships in terms of elevation

Precipitation-Elevation Relation:
Precip. (in/year) = 0.0052x - 16.601
where: x = Elevation (ft amsl)
$R^2 = 0.88$

Evaporation-Elevation Relation:
Evap. (in/year) = -0.0131x + 108.93
where: x = Elevation (ft amsl)
$R^2 = 0.90$
Land Cover

- Satellite imagery – thematic mapping
- Aerial imagery – color infrared (CIR)
Soil/Sediment

- Permeability
- Vadose zone hydrology / soil moisture balance

Maurer et al., 2004
Seismic Surveys

- Passive, low impact, non-invasive
- Based on material densities and gravitational effects

Modified from Maurer and Welch, 2001
CSEM/CSAMT Surveys

- CSEM (Controlled-source Electromagnetics)
- CSAMT (Controlled-source Audio-Frequency Magnetotellurics)
- Data utilized to define geologic structures, lithology, water table trends and fluid salinity
Gravity and Magnetic Surveys

- Data utilized to delineate subsurface geology, magnetic rocks, sedimentary basin depth, basement topography, and buried faults or contacts that can affect fluid flow.
Geology

- Geology
- Hydrogeology
Geology

- Site-specific
- Stratigraphic correlation
- Structural controls
 - Mineralization
 - Groundwater flow

Modified from Practical Mining LLC, 2014
Crafford, 2010
Geological Modeling

- 3D visualization of geologic units, structures, and other multi-element data sets
SURFACE WATER HYDROLOGY

- Flow/stage
 - Peak flow
 - Average flow
 - Base flow
Weirs

- Simple design and installation
- Low cost (<$500 fabrication)
- Raises head
- Requires freeboard and still pool
- Not self-cleaning
- Less accurate than a flume
- Work in Waterway Permit not required
Flumes

- More involved installation
- Higher cost (≥$2,000 fabrication)
- Moving flow
- Minimal raise in head
- Self-cleaning
- Submerged flow (certain types)
- Work in Waterway Permit often required
Velocity – Area

- Inexpensive and reliable method
- Most practical for large streams
- Used extensively
- Velocity measurement
 - Float
 - Current meter
 - Slope method
Bucket Testing

- Inexpensive and accepted method
- Size of container dictates range of flows
- Used extensively
Surface Water Models: Tools for Hydrogeology

- Precipitation statistics
- Spatial distribution of runoff and pit inflows
Potentiometric Surface

- Water level surface contours
- Hydraulic gradients and flow directions

Lopes, et al., 2006

Groundwater Contours Groundwater Elevations Depths to Water
Potentiometric Surface

- Combined data sets
 - Surface water rights/resources inventory/characterization
 * Stage/flow of seeps, springs, streams, lakes and ponds
 - Groundwater rights/resources inventory/characterization
 * Well logs, underground water rights and water levels
Geologic Models: Tools for Hydrogeology

- Targeting geologic units and structures for hydraulic testing from exploration coreholes
Geologic Models: Tools for Hydrogeology

- Targeting geologic units and structures for packer isolated hydraulic testing from exploration coreholes
Hydraulic Packers

- Hydraulic testing
- Monitoring
- Aquifer storage and recovery (ASR)
- Solution (ISR) mining
- Rock stress mechanics
- Hydraulic fracturing

Images courtesy of Inflatable Packers International
Packer Deployment/Retrieval

1. Deploy to target depth
2. Inflation/testing
3. Deflation/retrieval via rig wireline
Types of Packer Tests

- **Injection**
- **Discharge**
- **Falling Head**

* Straddle packers work with any test
Down-hole Geophysical Surveys

- Orientation/deflection
- E-log
- Spinner
- AT
Instrumentation Boreholes

- Vibrating Wire Piezometer (VWP)
- Water level monitoring
- Stability/deformation monitoring
- Licensed well driller not required
WELL DRILLING AND CONSTRUCTION

- Licensed well driller required
- Waiver required to:
 - Drill monitoring wells
- Water right permit required to:
 - Drill production well in designated basin, or
 - To use water from the well if in non-designated basin
Monitoring Wells

• Generally located upgradient and downgradient from process facilities
• Nested completions to assess vertical gradients
Air Lifting

- Common well development method
- The “Poor Man’s Pumping Test”
- Limited by:
 - Line submergence ($\geq 60\%$ ideal)
 - Pressure
 - Volumetric displacement rate
Slug and Injection Tests

- Small-scale test methods
 - Low permeability/yield
 - Shorter duration

- Large-scale test methods
 - Higher permeability/yield
 - Longer duration

- Large-scale behavior can be underestimated with small-scale tests

- Tests performed from piezometers or monitoring wells
 - Can alter ambient groundwater chemistry and cause future water quality samples to be unrepresentative
Pumping Tests

• Step drawdown
Pumping Tests

• Constant rate discharge
Well Purging and Sampling

- 3 well Volume
- Low-flow
- Minimum Purge
 - HydraSleeve™
 - Passive Diffusion Bag Sampler (PDBS)
 - Polysulfone Membrane Sampler (PSMS)
 - Regenerated Cellulose Sampler (RCS)
 - Rigid Porous Polyethylene Sampler (RPPS)
3-well Volume Purging and Sampling

- Cost limitations
- Water management and disposal
- Time limitations
Low-flow Purging and Sampling

- Water management and disposal
- Cost limitations
- Depth limitations
- Time limitations
HydraSleeve

- Discrete depth interval, no-purge groundwater sampler
- Independently tested to provide comparable results
- Simple and repeatable (3-steps)

1. **Deploy**
2. **Retrieve**
3. **Discharge**
HydraSleeve

- Facilitates **simultaneous** collection from discrete intervals
- Most cost effective groundwater sampling method
- Can reduce field labor, sampling and equipment costs by \(\geq 50\% \) and, in some cases, up to \(80\% \)
WATER QUALITY / AQUEOUS GECHEMISTRY

- Piper plot / trilinear diagram
- Evaporative trends / isotopes
Conceptual Modeling – General Approach

Exploration Drilling and Geological Modeling

Hydrological Characterization

Geochemical Characterization

Geotechnical Characterization

Surface Water Modeling

Conceptual Hydrogeological Modeling

Maurer and Welch, 2001
Conceptual Hydrogeologic Model

- Selected components
Conceptual Hydrogeologic Model

- Selected components
Groundwater Modeling – General Approach

- Conceptual Hydrogeologic Model
- Numerical Model Construction and Calibration
- Incorporate Current Mining Plan
- Predict Inflows and Determine Mine Water Demand
- Develop Dewatering Plan and Water Supply Plan
- Dewatering Simulation and Impact Prediction
- Conduct Sensitivity/Uncertainty Analyses
Groundwater Models as Tools

- Planning, design, permitting, operations, reclamation and closure
- Prediction of pre-mining, operations/closure and post-mining conditions
 - Infilling rates for open pits and underground workings
 - Draindown from HL, TS, and WRS facilities and soil covers
- Optimization
 - Dewatering systems/programs, and
 - Mine water supply systems/programs
- Prediction of pore pressures
 - Slope stability (open pit), and
 - Roof stability (underground)
- Prediction of cumulative impacts to water resources
 - Dewatering, water supply and water disposal programs
 - Infiltration from HL, TS, and WRS facilities
QUESTIONS?

THANK YOU

Tim Donahoe, PLS, WRS, CEM
tdonahoe@srk.com
(775) 828-6800

srk consulting